For an arbitrary dimension n, we study: the polyharmonic Gaussian field hL on the discrete torus T-L(n)=1/L Z(n)/Z(n), that is the random field whose law on R-TLn given by c(n)e(-bn)& Vert;(-Delta L)(n/4h)& Vert;(2)dh, where dh is the Lebesgue measure and Delta(L) is the discrete Laplacian; the associated discrete Liouville quantum gravity (LQG) measure associated with it, that is, the random measure on T-L(n) mu(L)(dz)=exp(gamma h(L)(z)-gamma(2)/ 2 Eh(L)(z))dz, where gamma is a regularity parameter. As L ->infinity, we prove convergence of the fields h(L) to the polyharmonic Gaussian field h on the continuous torus T-n=R-n/Z(n), as well as convergence of the random measures mu(L) to the LQG measure mu on Tn, for all |gamma|< root 2n.

Dello Schiavo, L., Herry, R., Kopfer, E., Sturm, K.t. (2025). Polyharmonic fields and Liouville quantum gravity measures on tori of arbitrary dimension: From discrete to continuous. MATHEMATISCHE NACHRICHTEN, 298(1), 244-281 [10.1002/mana.202400169].

Polyharmonic fields and Liouville quantum gravity measures on tori of arbitrary dimension: From discrete to continuous

Dello Schiavo L.;
2025-01-01

Abstract

For an arbitrary dimension n, we study: the polyharmonic Gaussian field hL on the discrete torus T-L(n)=1/L Z(n)/Z(n), that is the random field whose law on R-TLn given by c(n)e(-bn)& Vert;(-Delta L)(n/4h)& Vert;(2)dh, where dh is the Lebesgue measure and Delta(L) is the discrete Laplacian; the associated discrete Liouville quantum gravity (LQG) measure associated with it, that is, the random measure on T-L(n) mu(L)(dz)=exp(gamma h(L)(z)-gamma(2)/ 2 Eh(L)(z))dz, where gamma is a regularity parameter. As L ->infinity, we prove convergence of the fields h(L) to the polyharmonic Gaussian field h on the continuous torus T-n=R-n/Z(n), as well as convergence of the random measures mu(L) to the LQG measure mu on Tn, for all |gamma|< root 2n.
2025
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MATH-03/B - Probabilità e statistica matematica
Settore MATH-03/A - Analisi matematica
English
Con Impact Factor ISI
Dello Schiavo, L., Herry, R., Kopfer, E., Sturm, K.t. (2025). Polyharmonic fields and Liouville quantum gravity measures on tori of arbitrary dimension: From discrete to continuous. MATHEMATISCHE NACHRICHTEN, 298(1), 244-281 [10.1002/mana.202400169].
Dello Schiavo, L; Herry, R; Kopfer, E; Sturm, Kt
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Dello_Schiavo__Pub19_2024g.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/433670
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact