We study ergodic decompositions of Dirichlet spaces under intertwining via unitary order isomorphisms. We show that the ergodic decomposition of a quasi-regular Dirichlet space is unique up to a unique isomorphism of the indexing space. Furthermore, every unitary order isomorphism intertwining two quasi-regular Dirichlet spaces is decomposable over their ergodic decompositions up to conjugation via an isomorphism of the corresponding indexing spaces.

Dello Schiavo, L., Wirth, M. (2023). Ergodic decompositions of Dirichlet forms under order isomorphisms. JOURNAL OF EVOLUTION EQUATIONS, 23(1) [10.1007/s00028-022-00859-7].

Ergodic decompositions of Dirichlet forms under order isomorphisms

Dello Schiavo L.
;
2023-01-01

Abstract

We study ergodic decompositions of Dirichlet spaces under intertwining via unitary order isomorphisms. We show that the ergodic decomposition of a quasi-regular Dirichlet space is unique up to a unique isomorphism of the indexing space. Furthermore, every unitary order isomorphism intertwining two quasi-regular Dirichlet spaces is decomposable over their ergodic decompositions up to conjugation via an isomorphism of the corresponding indexing spaces.
2023
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MATH-03/A - Analisi matematica
Settore MATH-03/B - Probabilità e statistica matematica
English
Con Impact Factor ISI
Direct integral
Dirichlet forms
Ergodic decomposition
Intertwining
Order isomorphism
Dello Schiavo, L., Wirth, M. (2023). Ergodic decompositions of Dirichlet forms under order isomorphisms. JOURNAL OF EVOLUTION EQUATIONS, 23(1) [10.1007/s00028-022-00859-7].
Dello Schiavo, L; Wirth, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Dello_Schiavo__Pub11_2023a.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 412.71 kB
Formato Adobe PDF
412.71 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/433669
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact