We study ergodic decompositions of Dirichlet spaces under intertwining via unitary order isomorphisms. We show that the ergodic decomposition of a quasi-regular Dirichlet space is unique up to a unique isomorphism of the indexing space. Furthermore, every unitary order isomorphism intertwining two quasi-regular Dirichlet spaces is decomposable over their ergodic decompositions up to conjugation via an isomorphism of the corresponding indexing spaces.
Dello Schiavo, L., Wirth, M. (2023). Ergodic decompositions of Dirichlet forms under order isomorphisms. JOURNAL OF EVOLUTION EQUATIONS, 23(1) [10.1007/s00028-022-00859-7].
Ergodic decompositions of Dirichlet forms under order isomorphisms
Dello Schiavo L.
;
2023-01-01
Abstract
We study ergodic decompositions of Dirichlet spaces under intertwining via unitary order isomorphisms. We show that the ergodic decomposition of a quasi-regular Dirichlet space is unique up to a unique isomorphism of the indexing space. Furthermore, every unitary order isomorphism intertwining two quasi-regular Dirichlet spaces is decomposable over their ergodic decompositions up to conjugation via an isomorphism of the corresponding indexing spaces.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
Dello_Schiavo__Pub11_2023a.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
412.71 kB
Formato
Adobe PDF
|
412.71 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


