We consider the open symmetric exclusion (SEP) and inclusion (SIP) processes on a bounded Lipschitz domain Omega, with both fast and slow boundary. For the random walks on Omega dual to SEP/SIP we establish: a functional-CLT-type convergence to the Brownian motion on Omega with either Neumann (slow boundary), Dirichlet (fast boundary), or Robin (at criticality) boundary conditions; the discrete-to-continuum convergence of the corresponding harmonic profiles. As a consequence, we rigorously derive the hydrodynamic and hydrostatic limits for SEP/SIP on Omega, and analyze their stationary nonequilibrium fluctuations. All scaling limit results for SEP/SIP concern finite-dimensional distribution convergence only, as our duality techniques do not require to establish tightness for the fields associated to the particle systems.

Dello Schiavo, L., Portinale, L., Sau, F. (2024). Scaling limits of random walks, harmonic profiles, and stationary nonequilibrium states in Lipschitz domains. THE ANNALS OF APPLIED PROBABILITY, 34(2), 1789-1845 [10.1214/23-AAP2007].

Scaling limits of random walks, harmonic profiles, and stationary nonequilibrium states in Lipschitz domains

Dello Schiavo L.;
2024-01-01

Abstract

We consider the open symmetric exclusion (SEP) and inclusion (SIP) processes on a bounded Lipschitz domain Omega, with both fast and slow boundary. For the random walks on Omega dual to SEP/SIP we establish: a functional-CLT-type convergence to the Brownian motion on Omega with either Neumann (slow boundary), Dirichlet (fast boundary), or Robin (at criticality) boundary conditions; the discrete-to-continuum convergence of the corresponding harmonic profiles. As a consequence, we rigorously derive the hydrodynamic and hydrostatic limits for SEP/SIP on Omega, and analyze their stationary nonequilibrium fluctuations. All scaling limit results for SEP/SIP concern finite-dimensional distribution convergence only, as our duality techniques do not require to establish tightness for the fields associated to the particle systems.
2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MATH-03/B - Probabilità e statistica matematica
English
Con Impact Factor ISI
Symmetric exclusion process
symmetric inclusion process
stationary nonequilibrium states
hydrodynamic limit
hydrostatic limit
stationary nonequilibrium fluctuations
Lipschitz domain
Dello Schiavo, L., Portinale, L., Sau, F. (2024). Scaling limits of random walks, harmonic profiles, and stationary nonequilibrium states in Lipschitz domains. THE ANNALS OF APPLIED PROBABILITY, 34(2), 1789-1845 [10.1214/23-AAP2007].
Dello Schiavo, L; Portinale, L; Sau, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Dello_Schiavo__Pub16_2024d.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/433668
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact