We study random perturbations of a Riemannian manifold(M,g)by means of so-called Fractional Gaussian Fields, which are defined intrinsically by the given manifold. The fields h(center dot):omega -> h(omega )will act on the manifold via the conformal transformation g -> g(omega):=e(2h omega)g.Our focus will be on the regular case with Hurst parameterH>0, the critical case H=0 being the celebrated Liouville geometry in two dimensions. We want to understand how basic geometric and functional-analytic quantities like diameter, volume, heat kernel, Brownian motion, spectral bound, or spectral gap change under the influence of the noise. And if so, isit possible to quantify these dependencies in terms of key parameters of the noise? Another goal is to define and analyze in detail the Fractional Gaussian Fields on a general Riemannian manifold, a fascinating object of independent interest.

Dello Schiavo, L., Kopfer, E., Sturm, K.t. (2024). A Discovery Tour in Random Riemannian Geometry. POTENTIAL ANALYSIS, 61(3), 501-553 [10.1007/s11118-023-10118-0].

A Discovery Tour in Random Riemannian Geometry

Dello Schiavo L.;
2024-01-01

Abstract

We study random perturbations of a Riemannian manifold(M,g)by means of so-called Fractional Gaussian Fields, which are defined intrinsically by the given manifold. The fields h(center dot):omega -> h(omega )will act on the manifold via the conformal transformation g -> g(omega):=e(2h omega)g.Our focus will be on the regular case with Hurst parameterH>0, the critical case H=0 being the celebrated Liouville geometry in two dimensions. We want to understand how basic geometric and functional-analytic quantities like diameter, volume, heat kernel, Brownian motion, spectral bound, or spectral gap change under the influence of the noise. And if so, isit possible to quantify these dependencies in terms of key parameters of the noise? Another goal is to define and analyze in detail the Fractional Gaussian Fields on a general Riemannian manifold, a fascinating object of independent interest.
2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MATH-03/B - Probabilità e statistica matematica
Settore MATH-02/B - Geometria
Settore MATH-03/A - Analisi matematica
English
Con Impact Factor ISI
Fractional gaussian fields
Gaussian free field
Random geometry
Liouville quantum gravity
Liouville brownian motion
Spectral gap estimates
Dello Schiavo, L., Kopfer, E., Sturm, K.t. (2024). A Discovery Tour in Random Riemannian Geometry. POTENTIAL ANALYSIS, 61(3), 501-553 [10.1007/s11118-023-10118-0].
Dello Schiavo, L; Kopfer, E; Sturm, Kt
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Dello_Schiavo__Pub13_2024a.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/433667
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact