We consider the Rademacher-and Sobolev-to-Lipschitztype properties for arbitrary quasi-regular strongly local Dirichlet spaces. We discuss the persistence of these properties under localization, globalization, transfer to weighted spaces, tensorization, and direct integration. As byproducts, we obtain: necessary and sufficient conditions to identify a quasi-regular strongly local Dirichlet form on an extended metric topological sigma-finite possibly non-Radon measure space with the Cheeger energy of the space; the tensorization of intrinsic distances; the tensorization of the Varadhan short-time asymptotics. (c) 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).

Dello Schiavo, L., Suzuki, K. (2025). Persistence of Rademacher-type and Sobolev-to-Lipschitz properties. ADVANCES IN MATHEMATICS, 481 [10.1016/j.aim.2025.110542].

Persistence of Rademacher-type and Sobolev-to-Lipschitz properties

Dello Schiavo L.
;
2025-01-01

Abstract

We consider the Rademacher-and Sobolev-to-Lipschitztype properties for arbitrary quasi-regular strongly local Dirichlet spaces. We discuss the persistence of these properties under localization, globalization, transfer to weighted spaces, tensorization, and direct integration. As byproducts, we obtain: necessary and sufficient conditions to identify a quasi-regular strongly local Dirichlet form on an extended metric topological sigma-finite possibly non-Radon measure space with the Cheeger energy of the space; the tensorization of intrinsic distances; the tensorization of the Varadhan short-time asymptotics. (c) 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).
2025
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MATH-03/A - Analisi matematica
Settore MATH-03/B - Probabilità e statistica matematica
English
Con Impact Factor ISI
Dirichlet spaces
Rademacher theorem
Sobolev-to-Lipschitz property
Tensorization
Dello Schiavo, L., Suzuki, K. (2025). Persistence of Rademacher-type and Sobolev-to-Lipschitz properties. ADVANCES IN MATHEMATICS, 481 [10.1016/j.aim.2025.110542].
Dello Schiavo, L; Suzuki, K
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/433303
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact