Neocortical networks play a major role in the genesis of generalized spike-and-wave (SW) discharges associated with absence seizures in humans and in animal models, including genetically predisposed WAG/Rij rats. Here, we tested the hypothesis that alterations in GABAB receptors contribute to neocortical hyperexcitability in these animals. By using Real-Time PCR we found that mRNA levels for most GABAB(1) subunits are diminished in epileptic WAG/Rij neocortex as compared with age-matched non-epileptic controls (NEC), whereas GABAB(2) mRNA is unchanged. Next, we investigated the cellular distribution of GABAB(1) and GABAB(2) subunits by confocal microscopy and discovered that GABAB(1) subunits fail to localize in the distal dendrites of WAG/Rij neocortical pyramidal cells. Intracellular recordings from neocortical cells in an in vitro slice preparation demonstrated reduced paired-pulse depression of pharmacologically isolated excitatory and inhibitory responses in epileptic WAG/Rij rats as compared with NECs; moreover, paired-pulse depression in NEC slices was diminished by a GABAB receptor antagonist to a greater extent than in WAG/Rij rats further suggesting GABAB receptor dysfunction. In conclusion, our data identify changes in GABAB receptor subunit expression and distribution along with decreased paired-pulse depression in epileptic WAG/Rij rat neocortex. We propose that these alterations may contribute to neocorticalhyperexcitability and thus to SW generation in absence epilepsy.
Merlo, D., Mollinari, C., Inaba, Y., Cardinale, A., Rinaldi, A.m., D'Antuono, M., et al. (2007). Reduced GABA(B) receptor subunit expression and paired-pulse depression in a genetic model of absence seizures. NEUROBIOLOGY OF DISEASE, 25(3), 631-641 [10.1016/j.nbd.2006.11.005].
Reduced GABA(B) receptor subunit expression and paired-pulse depression in a genetic model of absence seizures
RINALDI, ANNA MARIA;D'ARCANGELO, GIOVANNA;TANCREDI, VIRGINIA;
2007-01-01
Abstract
Neocortical networks play a major role in the genesis of generalized spike-and-wave (SW) discharges associated with absence seizures in humans and in animal models, including genetically predisposed WAG/Rij rats. Here, we tested the hypothesis that alterations in GABAB receptors contribute to neocortical hyperexcitability in these animals. By using Real-Time PCR we found that mRNA levels for most GABAB(1) subunits are diminished in epileptic WAG/Rij neocortex as compared with age-matched non-epileptic controls (NEC), whereas GABAB(2) mRNA is unchanged. Next, we investigated the cellular distribution of GABAB(1) and GABAB(2) subunits by confocal microscopy and discovered that GABAB(1) subunits fail to localize in the distal dendrites of WAG/Rij neocortical pyramidal cells. Intracellular recordings from neocortical cells in an in vitro slice preparation demonstrated reduced paired-pulse depression of pharmacologically isolated excitatory and inhibitory responses in epileptic WAG/Rij rats as compared with NECs; moreover, paired-pulse depression in NEC slices was diminished by a GABAB receptor antagonist to a greater extent than in WAG/Rij rats further suggesting GABAB receptor dysfunction. In conclusion, our data identify changes in GABAB receptor subunit expression and distribution along with decreased paired-pulse depression in epileptic WAG/Rij rat neocortex. We propose that these alterations may contribute to neocorticalhyperexcitability and thus to SW generation in absence epilepsy.File | Dimensione | Formato | |
---|---|---|---|
Red.GABA_07n.2.pdf
accesso aperto
Dimensione
9.93 MB
Formato
Adobe PDF
|
9.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.