Social physics represents a promising frontier, where the principles of the discipline are employed to decode patterns and behaviours of human societies. By applying statistical and mathematical tools traditionally used in physics, this field bridges the gap between natural laws and the unpredictability of human behavior. In the current digital age, the vast amount of data generated by our daily activities in urban environments offers a unique perspective for analysing the complex dynamics of urban life. Every action, from grocery shopping and dining out to walking in a park, leaves behind a digital trail, turning ordinary activities into valuable sources of behavioral and social insights. This research delves into the study of Points of Interest (POIs)—such as museums, restaurants, shops, and parks—investigating their fundamental impact on the social and economic fabric and the overall quality of urban living. It aims to understand how interactions with these points shape urban resilience, social stratification, and the livability of urban environments. POIs serve as vitality hubs, significantly contributing to the attractiveness and neighbourhood quality of life. They play a crucial role in urban development, where a neighbourhood rich in diverse and accessible POIs often correlates with a vibrant and sought-after area. Conversely, POIs absence or unevenness can underscore or intensify social and economic disparities within a city. The diversity and uniqueness of POIs, as well as their accessibility, are key elements in shaping urban experiences and exposing inequalities in access to urban resources. The study of points of interest through mobility data analysis can reveal much about urban issues, indicating areas of privilege and highlighting disparities within city spaces. We examine the interaction patterns between citizens and POIs using high-accuracy (30m) GPS traces from Location Based Services (LBS) data. We focuses on Italian cities, which have been overlooked in international research due to data scarcity, and explores the dynamics of social stratification and urban resilience. Adopting an interdisciplinary approach that weaves together Complex Systems Theory, Urban Planning, and Data Science, this research has dual ambitions: firstly, to illustrate how POIs facilitate social interactions and economic resilience within urban areas; and secondly, to propose a fresh lens on accessibility, equity, and urban vitality issues. In the first introductory chapter, we explore the evolution of Complex Systems theory from its origins to its application in understanding urban dynamics. We frame cities as multifaceted entities shaped by the interactions among individuals and points of interest. Advances in technology and data analysis have transformed our approach to exploring and understanding urban spaces. The role of mobility data is highlighted, which, coupled with analytical advancements, allows researchers to decipher patterns of movement and social interaction within cities. This data-driven approach represents a significant development in urban studies, providing new opportunities for analysing and improving urban life. The second chapter shifts its focus from a micro to a macro perspective. It moves from a detailed examination centred around stops at points of interest to a broader exploration of urban challenges such as inequality, segregation, resilience, and the overall urban structure. This section comprehensively covers the variety of data sources utilised, clarifying why each was chosen and the approaches implemented for analysis. This approach allows for an understanding of the direct impact of POIs on urban life and their integration into wider contexts of inequalities and social dynamics. This contributes to a broad analysis that addresses both individual daily experiences and structural trends at the city level. The third chapter focuses on Milan, examining how mobility and interaction with POIs can reveal new aspects of socio-economic segregation. The analysis shifts from a static, residential perspective to a dynamic, neighbourhood-wide view. The aim is to dynamically observe over time and space the "social mixing ", the spatial and temporal coexistence of social groups. The study seeks to identify the topological features that determine the promotion of inclusive neighbourhoods, looking at city-related metrics (accessibility, liveability and attractiveness). Advanced statistical methods are employed to pinpoint the neighbourhood characteristics that encourage inclusivity and vibrant social mixing, highlighting the critical role of public transportation accessibility and a mix of POIs across different prices and categories (bar, museum, restaurant, shops...). The fourth chapter expands the investigation to include several major Italian cities, including Rome, Genoa, Naples, Trento, Turin, Venice, Bologna, Bergamo, and Florence. This chapter represents a methodological shift from analysing individual user movements to examining aggregated visitation data at points of interest. This change of perspective aims to protect user privacy by using collective visitation trends to gain valuable insights into how urban spaces promote interaction and engagement, without compromising individual privacy. This approach enables a thorough understanding of urban dynamics while demonstrating a commitment to ethical research practices. The unprecedented mobility disruptions triggered by the COVID-19 pandemic in 2020 serve as a backdrop for this exploration, presenting a unique opportunity to study urban resilience through the interaction between POIs and their surroundings. This global event occurred uniformly on a national scale, making it a unique case study to observe shifts in visitation patterns and the impact of urban structure on POI resilience. The findings, derived from Machine Learning and Network Theory, suggest that POIs in dense, diversified, and well-connected urban settings exhibit greater resilience, emphasizing the need for interconnected and varied urban designs to foster more resilient and inclusive cities. In sum, this dissertation sheds light on the dynamics of Italian urban spaces through points of interest, emphasizing their essential role in shaping the social and economic structure, and the resilience of urban fabrics. By exploring the diversity and interconnection of POIs, reveals how accessibility and service variety impact urban equity. This research encourages reflection on planning strategies that aim to create more inclusive, accessible, and adaptable cities. It moves beyond the focus on singular events like the pandemic or a specific city to encompass learned methodologies and future applications for comprehensive and proactive urban management.
La fisica sociale rappresenta una frontiera promettente, in cui i principi della disciplina vengono impiegati per decodificare i modelli e i comportamenti delle società umane. Applicando strumenti statistici e matematici tradizionalmente utilizzati in fisica, questo campo permette di collegare le leggi naturali all’imprevedibilità del comportamento umano. Nell’attuale era digitale, la grande quantità di dati generati dalle nostre attività quotidiane negli ambienti urbani offre una prospettiva unica per analizzare le complesse dinamiche della vita cittadina. Ogni azione, dal fare la spesa, al mangiare fuori, fino a passeggiare in un parco, lascia dietro di sé una scia digitale, convertendo gesti ordinari in importanti fonti di insight comportamentali e sociali. Questa ricerca si dedica allo studio dei Punti di Interesse (POI), come musei, ristoranti, negozi, e parchi, esaminando il loro impatto sulla struttura sociale, economica e sulla qualità della vita urbana. Lo scopo è comprendere come le loro interazioni modellino la resilienza urbana, la stratificazione sociale, e la vivibilità degli spazi urbani. I punti di interesse sono centro di vitalità e contribuiscono a definire l’attrattività e la qualità di vita dei quartieri, influenzando lo sviluppo urbano. Un quartiere ricco di POI diversificati e facilmente raggiungibili è spesso sinonimo di un’area vivace, mentre la loro assenza o disomogeneità può evidenziare o aggravare le disuguaglianze sociali ed economiche all’interno delle città. La diversità e l’unicità dei POI, insieme alla facilità con cui questi possono essere raggiunti, sono elementi chiave nella modellazione delle esperienze urbane ed evidenziano le disparità nell’accesso alle risorse cittadine. Lo studio dei punti di interesse tramite l’analisi di dati di mobilità può dire molto sulle problematiche della città e su quali aree sono piu favorite di altre mostrando inequità nelle diverse aeree delle città. Attraverso l’analisi dei Location Based data Service che forniscono tracce GPS con una alta accuracy (30m) questa ricerca analizza modelli di interazione tra cittadini e POI, esplorando le dinamiche di stratificazione sociale e resilienza urbana, focalizzandosi sulle città italiane, spesso trascurate nelle ricerche internazionali a causa della scarsa disponibilità di dati. Utilizziamo un approccio interdisciplinare, combinando teorie dei sistemi complessi, urbanistica, e data science con un duplice obiettivo: da un lato, mostrare come i POI modellino l’interazione sociale e la resilienza economica in aeree urbane, dall’altro, offrire una nuova prospettiva su questioni di accessibilità, equità e vitalità urbana. Nel primo capitolo, attraversiamo l’evoluzione della teoria dei sistemi complessi dalle sue radici storiche fino alla sua applicazione nella comprensione delle dinamiche urbane. Si introducono le città come organismi viventi, la cui complessità nasce dalle interazioni tra le persone e i punti di interesse. Grazie agli sviluppi tecnologici e all’analisi dei dati, il nostro modo di esplorare e comprendere gli spazi urbani è radicalmente cambiato. Si mette in evidenza il ruolo fondamentale dei dati di mobilità, che, insieme agli avanzamenti analitici, permette di decifrare modelli di movimento e interazione sociale nelle città. Questo approccio basato sui dati segna una svolta negli studi urbani, aprendo nuove strade per analizzare e migliorare la vita nelle nostre città. Nel secondo capitolo evidenziamo il passaggio dal micro al macro: dall’analisi dettagliata, focalizzata sulle fermate presso i punti di interesse, passiamo a una visione più ampia per esaminare problematiche urbane quali iniquità, segregazione, resilienza e la configurazione stessa della città. Si discute in dettaglio sui vari tipi di dati impiegati, illustrando le ragioni della loro selezione e i metodi adottati per il loro utilizzo. Questo approccio permette di comprendere non solo l’impatto diretto dei POI sulla vita urbana, ma anche come questi si inseriscono in macro contesti di disuguaglianze e dinamiche sociali, occupandoci, quindi, sia delle singole esperienze quotidiane sia delle tendenze strutturali a livello di città. Il terzo capitolo si concentra su Milano, esaminando come la mobilità e l’interazione con i POI possano rivelare nuovi aspetti della segregazione socio-economica, spostando l’analisi da una visione statica e residenziale, spesso trattata in letteratura, a una più dinamica nella scala dei quartieri. Si vuole osservare dinamicamente nel tempo e nello spazio il "social mixing", ossia la coesistenza nel tempo e nello spazio di persone di certe classi sociali, cercando di comprendere le caratteristiche topologiche che promuovono quartieri più inclusivi, indagando metriche relative alla accessibilità, alla viviblità e all’attrattività. Grazie all’impiego di tecniche statistiche, si identificano le caratteristiche chiave dei quartieri che promuovono l’inclusività e un maggiore social mixing, tra queste emerge l’importanza dell’accessibilità grazie al trasporto pubblico e la possibilità di avere aree con diversità di prezzo e di categorie (bar, ristoranti, musei..) dei POI. Il quarto capitolo, invece, si estende anche su altre importanti città italiane - Roma, Genova, Napoli, Trento, Torino, Venezia, Bologna, Bergamo, Firenze - esplorando l’interazione tra i POI nel loro vicinato e la conseguente resilienza di areee urbane. In questo caso il focus cambia, dall’utente a direttamente il punto di interesse, in modo da preservare la privacy degli utenti. L’analisi si sposta quindi dalle traiettorie dei singoli utenti ai pattern di visita aggregati dei punti di interessi. La pandemia di COVID-19 ha portato grandi cambiamenti nelle abitudini di mobilità all’interno delle città soprattutto durante il 2020. Questo evento, avvenuto in modo uniforme su scala nazionale, offre un caso di studio eccezionale per osservare cambiamenti nei pattern di visita e comprendere l’influenza della struttura urbana circostante sulla resilienza dei POI. Il capitolo esplora come diversità e interconnessione tra POI influenzino la capacità delle città di adattarsi e recuperare da shock imprevisti. Utilizzando tecniche di Machine Learning e teorie di network, troviamo che i POI situati in contesti urbani densi, diversificati e ben connessi dimostrano una maggiore resilienza. Questi risultati sottolineano l’importanza di promuovere tessuti urbani interconnessi e ricchi di diversità, evidenziando come tale approccio possa contribuire alla costruzione di città più resilienti e inclusive. In conclusione, questo lavoro analizza le dinamiche urbane italiane attraverso l’analisi dei punti di interesse sottolineando il loro ruolo cruciale nella formazione della struttura sociale, economica e della resilienza dei tessuti urbani. Esplorando la diversità e l’interconnessione dei POI, si mostra come l’accessibilità e la varietà dei servizi influenzino l’equità urbana. Questa ricerca invita alla riflessione sull’importanza di strategie di pianificazione che promuovano città più inclusive e accessibili, riducendo l’enfasi sugli eventi specifici come la pandemia, usata solo come scenario, o lo studio di una singola città, come Milano, per concentrarsi sulle metodologie apprese e sulle applicazioni pensando ad approcci scientifici che portino a una gestione urbana piu uniforme e inclusive.
Rossi Mori, L. (2024). Complex dynamics in urban environments: the role of Points Of Interest in shaping Italian cities.
Complex dynamics in urban environments: the role of Points Of Interest in shaping Italian cities
ROSSI MORI, LAVINIA
2024-01-01
Abstract
Social physics represents a promising frontier, where the principles of the discipline are employed to decode patterns and behaviours of human societies. By applying statistical and mathematical tools traditionally used in physics, this field bridges the gap between natural laws and the unpredictability of human behavior. In the current digital age, the vast amount of data generated by our daily activities in urban environments offers a unique perspective for analysing the complex dynamics of urban life. Every action, from grocery shopping and dining out to walking in a park, leaves behind a digital trail, turning ordinary activities into valuable sources of behavioral and social insights. This research delves into the study of Points of Interest (POIs)—such as museums, restaurants, shops, and parks—investigating their fundamental impact on the social and economic fabric and the overall quality of urban living. It aims to understand how interactions with these points shape urban resilience, social stratification, and the livability of urban environments. POIs serve as vitality hubs, significantly contributing to the attractiveness and neighbourhood quality of life. They play a crucial role in urban development, where a neighbourhood rich in diverse and accessible POIs often correlates with a vibrant and sought-after area. Conversely, POIs absence or unevenness can underscore or intensify social and economic disparities within a city. The diversity and uniqueness of POIs, as well as their accessibility, are key elements in shaping urban experiences and exposing inequalities in access to urban resources. The study of points of interest through mobility data analysis can reveal much about urban issues, indicating areas of privilege and highlighting disparities within city spaces. We examine the interaction patterns between citizens and POIs using high-accuracy (30m) GPS traces from Location Based Services (LBS) data. We focuses on Italian cities, which have been overlooked in international research due to data scarcity, and explores the dynamics of social stratification and urban resilience. Adopting an interdisciplinary approach that weaves together Complex Systems Theory, Urban Planning, and Data Science, this research has dual ambitions: firstly, to illustrate how POIs facilitate social interactions and economic resilience within urban areas; and secondly, to propose a fresh lens on accessibility, equity, and urban vitality issues. In the first introductory chapter, we explore the evolution of Complex Systems theory from its origins to its application in understanding urban dynamics. We frame cities as multifaceted entities shaped by the interactions among individuals and points of interest. Advances in technology and data analysis have transformed our approach to exploring and understanding urban spaces. The role of mobility data is highlighted, which, coupled with analytical advancements, allows researchers to decipher patterns of movement and social interaction within cities. This data-driven approach represents a significant development in urban studies, providing new opportunities for analysing and improving urban life. The second chapter shifts its focus from a micro to a macro perspective. It moves from a detailed examination centred around stops at points of interest to a broader exploration of urban challenges such as inequality, segregation, resilience, and the overall urban structure. This section comprehensively covers the variety of data sources utilised, clarifying why each was chosen and the approaches implemented for analysis. This approach allows for an understanding of the direct impact of POIs on urban life and their integration into wider contexts of inequalities and social dynamics. This contributes to a broad analysis that addresses both individual daily experiences and structural trends at the city level. The third chapter focuses on Milan, examining how mobility and interaction with POIs can reveal new aspects of socio-economic segregation. The analysis shifts from a static, residential perspective to a dynamic, neighbourhood-wide view. The aim is to dynamically observe over time and space the "social mixing ", the spatial and temporal coexistence of social groups. The study seeks to identify the topological features that determine the promotion of inclusive neighbourhoods, looking at city-related metrics (accessibility, liveability and attractiveness). Advanced statistical methods are employed to pinpoint the neighbourhood characteristics that encourage inclusivity and vibrant social mixing, highlighting the critical role of public transportation accessibility and a mix of POIs across different prices and categories (bar, museum, restaurant, shops...). The fourth chapter expands the investigation to include several major Italian cities, including Rome, Genoa, Naples, Trento, Turin, Venice, Bologna, Bergamo, and Florence. This chapter represents a methodological shift from analysing individual user movements to examining aggregated visitation data at points of interest. This change of perspective aims to protect user privacy by using collective visitation trends to gain valuable insights into how urban spaces promote interaction and engagement, without compromising individual privacy. This approach enables a thorough understanding of urban dynamics while demonstrating a commitment to ethical research practices. The unprecedented mobility disruptions triggered by the COVID-19 pandemic in 2020 serve as a backdrop for this exploration, presenting a unique opportunity to study urban resilience through the interaction between POIs and their surroundings. This global event occurred uniformly on a national scale, making it a unique case study to observe shifts in visitation patterns and the impact of urban structure on POI resilience. The findings, derived from Machine Learning and Network Theory, suggest that POIs in dense, diversified, and well-connected urban settings exhibit greater resilience, emphasizing the need for interconnected and varied urban designs to foster more resilient and inclusive cities. In sum, this dissertation sheds light on the dynamics of Italian urban spaces through points of interest, emphasizing their essential role in shaping the social and economic structure, and the resilience of urban fabrics. By exploring the diversity and interconnection of POIs, reveals how accessibility and service variety impact urban equity. This research encourages reflection on planning strategies that aim to create more inclusive, accessible, and adaptable cities. It moves beyond the focus on singular events like the pandemic or a specific city to encompass learned methodologies and future applications for comprehensive and proactive urban management.| File | Dimensione | Formato | |
|---|---|---|---|
|
Lavinia_Tesi_PHD (4).pdf
non disponibili
Licenza:
Copyright degli autori
Dimensione
30.71 MB
Formato
Adobe PDF
|
30.71 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


