Cancer progression is driven by cumulative changes that promote and maintain the malignant phenotype. Epigenetic alterations are central to malignant transformation and to the development of therapy resistance. Changes in DNA methylation, histone acetylation and methylation, noncoding RNA expression and higher-order chromatin structures are epigenetic features of cancer, which are independent of changes in the DNA sequence. Despite the knowledge that these epigenetic alterations disrupt essential pathways that protect cells from uncontrolled growth, how these modifications collectively coordinate cancer gene expression programs remains poorly understood. In this dissertation, I utilize molecular and informatic approaches to define and characterize the genome-wide epigenetic patterns of two important human cancer cell models such as bladder and colon carcinoma. I further explore the dynamic alterations of chromatin structure and its interplay with gene disregulation. To date most epigenetic studies have been performed on cell lines and very few studies have been performed on cancer tissue from patients. My thesis starts from in vitro studies previously carried out in my laboratory based on an osteogenic differentiation model of both neuroblastoma cells (Carpentieri et al., 2015) and blood-derived stem cells (Carpentieri et al., 2017; Gambacurta et al., 2019). These studies led to the identification of some histone H3 differential modifications states that are essential for an optimal cellular reprogramming process (H3K27me3, H3K9me2, H3K79me3). In the first part of this dissertation, patient’s biopsies from healthy and tumor tissues of basilioma, bladder and head-neck were used to characterize genome-wide patterns of H3K79me3, H3K9me2 and H3K27me3 chromatin histone methylation states through immunofluorescence experiments. Overall, the results from this study uncover potential roles for specific epigenetic histone modification in altering 3D genome structure in cancer cells. Moreover, the results show how is possible to define two different epigenetic phenotypes in healthy and tumor tissues reflecting well-defined genomic regions maybe responsible for both tumor transcriptional dysregulation and chromatin spatial remodelling. In the second part of this dissertation, I investigate the dynamic changes of chromatin structure in normal and cancer tissues (four subtypes of bladder, 6 colon, T-ALL patients) by Hi-C (High Chromosome Conformation Capture) experiments. Accordingly, I generated genome-wide chromatin contact maps, TAD, Loop and histone modification profiles and compared and integrated these profiles to determine the differential 3D genome reorganization of chromatin A\B compartments in cancer tissues. Overall, the results reveal widespread differences among the different types of cancer but surprisingly some spatial chromosomal rearrangements of the genome are common. Furthermore, bladder, T-Lymphocytes and colon show similar compartment change between normal/tumor samples in chromosome 20. A compartmental analysis followed by RNA-seq analysis confirms common and distinctive transcriptional dysregulation involving eighteen up-regulated genes and six down-regulated genes not only in bladder tumor but also in other twelve tumors examined. Pathway’s analysis reveals how these genes are involved in specific categories based on biological processes (cell cycle processes, gene transcription, metabolism, DNA repair, immune system response and programmed cell death). The result of this dissertation reveals that most alterations occur in regions that correspond to active chromatin states, and that dynamic chromatin is linked to specific histone epigenetic modifications and to genes associated with specific common cancer growth and metabolic signaling pathways. The study of these genes will be useful not only for the identification of new therapeutic targets for a more personalized medicine but for a possible repositioning of already used drugs and for the identification of new diagnostic and prognostic markers. Taken together, this dissertation reveals novel insight into dynamic epigenomic alterations that occur with extrinsic stimuli and provides insight into mechanisms underlying the therapeutic responses in cancer cells.
La progressione del cancro è guidata da cambiamenti cumulativi che promuovono e mantengono il fenotipo maligno. Le alterazioni epigenetiche sono fondamentali per la trasformazione maligna e per lo sviluppo della resistenza alla terapia. Le caratteristiche epigenetiche del cancro che sono indipendenti dai cambiamenti nella sequenza del DNA, sono i cambiamenti nella metilazione del DNA, l'acetilazione e la metilazione degli istoni, l'espressione dell'RNA non codificante e le strutture della cromatina di ordine superiore. Ad oggi rimane poco compreso il modo in cui queste modifiche coordinano collettivamente i programmi di espressione genica del cancro, nonostante la conoscenza che queste alterazioni epigenetiche bloccano i pathway essenziali che proteggono le cellule dalla crescita incontrollata. In questa tesi, ho utilizzato approcci molecolari e bioinformatici per definire e caratterizzare l’epigenetica dell’intero genoma di due importanti modelli di cellule tumorali umane come il carcinoma della vescica e del colon. Ho esplorato ulteriormente le alterazioni dinamiche della struttura della cromatina e la sua implicazione nella disregolazione genica. Ad oggi la maggior parte degli studi epigenetici sono stati eseguiti su linee cellulari e pochissimi studi sono stati condotti su tessuti cancerosi di pazienti. La mia tesi parte da studi in vitro precedentemente effettuati nel mio laboratorio basati su un modello di differenzimento osteogenico sia di cellule di neuroblastoma (Carpentieri et al., 2015) che di cellule staminali derivate dal sangue (Carpentieri et al., 2017; Gambacurta et al., 2019). Questi studi hanno portato all'identificazione di alcune modifiche dell'istone H3 essenziali per un ottimale processo di riprogrammazione cellulare (H3K27me3, H3K9me2, H3K79me3). Nella prima parte di questa tesi, sono state utilizzate biopsie prelevate da tessuti sani e tumorali di pazienti affetti da basilioma, tumore della vescica e testa-collo, per caratterizzare attraverso esperimenti di immunofluorescenza il cambiamento di espressione di marcatori epigenetici dell’istone H3 (H3K79me3, H3K9me2 e H3K27me3). Nel complesso, i risultati di questo studio rivelano ruoli potenziali per specifiche modifiche epigenetiche dell'istone H3 nell'alterazione della struttura 3D del genoma delle cellule tumorali. Inoltre, i risultati mostrano come sia possibile definire due differenti fenotipi epigenetici in tessuti sani e tumorali che riflettono regioni genomiche ben definite forse responsabili sia della disregolazione trascrizionale del tumore che del rimodellamento spaziale della cromatina. 8 Nella seconda parte di questa tesi, ho indagato sui cambiamenti dinamici della struttura della cromatina nei tessuti normali e cancerosi (quattro sottotipi di pazienti con vescica, colon e T-ALL) mediante esperimenti di Hi-C (High Chromosome Conformation Capture). Di conseguenza, ho generato mappe di contatto della cromatina dell'intero genoma, TAD, Loop e i profili di modifiche dell'istone H3 e ho confrontato e integrato questi dati per determinare la riorganizzazione differenziale 3D del genoma dei compartimenti della cromatina A\B nei tessuti tumorali. Questi risultati rivelano differenze diffuse tra i diversi tipi di cancro, ma sorprendentemente alcuni comuni riarrangiamenti spaziali del genoma. Inoltre, vescica, linfociti T e colon mostrano cambiamenti compartimentali simili nel cromosoma 20 tra campioni normali/tumorali. Un'analisi compartimentale seguita da analisi dell’RNA-seq conferma la disregolazione trascrizionale comune e distintiva che coinvolge diciotto geni up-regolati e sei geni down-regolati non solo nel tumore della vescica ma anche in altri dodici tumori esaminati. L'analisi dei pathway di questi geni rivela come siano coinvolti in categorie specifiche basate su processi biologici (processi del ciclo cellulare, trascrizione genica, metabolismo, riparazione del DNA, risposta del sistema immunitario e morte cellulare programmata). Il risultato di questa tesi rivela che la maggior parte delle alterazioni si verifica nelle regioni che corrispondono agli stati della cromatina attiva e che la cromatina dinamica è legata a specifiche modificazioni epigenetiche dell'istone H3 e a geni associati a specifiche vie di crescita del cancro e di segnalazione metabolica. Lo studio di questi geni sarà utile non solo per l'identificazione di nuovi bersagli terapeutici per una medicina più personalizzata ma per un eventuale riposizionamento di farmaci già utilizzati e per l'identificazione di nuovi marker diagnostici e prognostici. Nel loro insieme, questa tesi rivela nuove informazioni sulle alterazioni epigenomiche dinamiche che si verificano con stimoli estrinseci e fornisce informazioni sui meccanismi alla base delle risposte terapeutiche nelle cellule tumorali.
Ruggiero, C.m. (2021). Deciphering the 3D genome structure and DNA methylation reveals the role of H3K79 and H3K9 methylations in causing bladder cancer through transcription dysregulation.
Deciphering the 3D genome structure and DNA methylation reveals the role of H3K79 and H3K9 methylations in causing bladder cancer through transcription dysregulation
RUGGIERO, CRISTINA MIMMA
2021-01-01
Abstract
Cancer progression is driven by cumulative changes that promote and maintain the malignant phenotype. Epigenetic alterations are central to malignant transformation and to the development of therapy resistance. Changes in DNA methylation, histone acetylation and methylation, noncoding RNA expression and higher-order chromatin structures are epigenetic features of cancer, which are independent of changes in the DNA sequence. Despite the knowledge that these epigenetic alterations disrupt essential pathways that protect cells from uncontrolled growth, how these modifications collectively coordinate cancer gene expression programs remains poorly understood. In this dissertation, I utilize molecular and informatic approaches to define and characterize the genome-wide epigenetic patterns of two important human cancer cell models such as bladder and colon carcinoma. I further explore the dynamic alterations of chromatin structure and its interplay with gene disregulation. To date most epigenetic studies have been performed on cell lines and very few studies have been performed on cancer tissue from patients. My thesis starts from in vitro studies previously carried out in my laboratory based on an osteogenic differentiation model of both neuroblastoma cells (Carpentieri et al., 2015) and blood-derived stem cells (Carpentieri et al., 2017; Gambacurta et al., 2019). These studies led to the identification of some histone H3 differential modifications states that are essential for an optimal cellular reprogramming process (H3K27me3, H3K9me2, H3K79me3). In the first part of this dissertation, patient’s biopsies from healthy and tumor tissues of basilioma, bladder and head-neck were used to characterize genome-wide patterns of H3K79me3, H3K9me2 and H3K27me3 chromatin histone methylation states through immunofluorescence experiments. Overall, the results from this study uncover potential roles for specific epigenetic histone modification in altering 3D genome structure in cancer cells. Moreover, the results show how is possible to define two different epigenetic phenotypes in healthy and tumor tissues reflecting well-defined genomic regions maybe responsible for both tumor transcriptional dysregulation and chromatin spatial remodelling. In the second part of this dissertation, I investigate the dynamic changes of chromatin structure in normal and cancer tissues (four subtypes of bladder, 6 colon, T-ALL patients) by Hi-C (High Chromosome Conformation Capture) experiments. Accordingly, I generated genome-wide chromatin contact maps, TAD, Loop and histone modification profiles and compared and integrated these profiles to determine the differential 3D genome reorganization of chromatin A\B compartments in cancer tissues. Overall, the results reveal widespread differences among the different types of cancer but surprisingly some spatial chromosomal rearrangements of the genome are common. Furthermore, bladder, T-Lymphocytes and colon show similar compartment change between normal/tumor samples in chromosome 20. A compartmental analysis followed by RNA-seq analysis confirms common and distinctive transcriptional dysregulation involving eighteen up-regulated genes and six down-regulated genes not only in bladder tumor but also in other twelve tumors examined. Pathway’s analysis reveals how these genes are involved in specific categories based on biological processes (cell cycle processes, gene transcription, metabolism, DNA repair, immune system response and programmed cell death). The result of this dissertation reveals that most alterations occur in regions that correspond to active chromatin states, and that dynamic chromatin is linked to specific histone epigenetic modifications and to genes associated with specific common cancer growth and metabolic signaling pathways. The study of these genes will be useful not only for the identification of new therapeutic targets for a more personalized medicine but for a possible repositioning of already used drugs and for the identification of new diagnostic and prognostic markers. Taken together, this dissertation reveals novel insight into dynamic epigenomic alterations that occur with extrinsic stimuli and provides insight into mechanisms underlying the therapeutic responses in cancer cells.| File | Dimensione | Formato | |
|---|---|---|---|
|
tesi+completa-merged (1)-compresso (1).pdf
non disponibili
Licenza:
Copyright degli autori
Dimensione
1.83 MB
Formato
Adobe PDF
|
1.83 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


