We show numerically, for standard-like maps, how the singularities (in the complex parameter) of the function which conjugates the map to a rotation of rational period behave when the period goes to an irrational number. Furthermore, we propose a numerical method to extrapolate the radius of convergence of the series parametrizing the solution of periodic orbits. The results are compared with analyses performed by Pade approximants, Greene's method, root criterion and the prediction by renormalization theory. (C) 2002 Elsevier Science B.V. All rights reserved.

Celletti, A., Falcolini, C. (2002). Singularities of periodic orbits near invariant curves. PHYSICA D-NONLINEAR PHENOMENA, 170(2), 87-102 [10.1016/S0167-2789(02)00543-2].

Singularities of periodic orbits near invariant curves

CELLETTI, ALESSANDRA;
2002-01-01

Abstract

We show numerically, for standard-like maps, how the singularities (in the complex parameter) of the function which conjugates the map to a rotation of rational period behave when the period goes to an irrational number. Furthermore, we propose a numerical method to extrapolate the radius of convergence of the series parametrizing the solution of periodic orbits. The results are compared with analyses performed by Pade approximants, Greene's method, root criterion and the prediction by renormalization theory. (C) 2002 Elsevier Science B.V. All rights reserved.
2002
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/07 - FISICA MATEMATICA
English
Con Impact Factor ISI
Invariant curves; Padé approximants; Periodic orbits; Standard map
Celletti, A., Falcolini, C. (2002). Singularities of periodic orbits near invariant curves. PHYSICA D-NONLINEAR PHENOMENA, 170(2), 87-102 [10.1016/S0167-2789(02)00543-2].
Celletti, A; Falcolini, C
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/43013
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact