Background: Despite its central role in pediatric pre-surgical evaluation of drug-resistant focal epilepsy, conventional analog 18F-fluorodeoxyglucose (18F-FDG) PET/CT (aPET) systems often yield modest epileptogenic zone (EZ) detection rates (~50–60%). Silicon photomultiplier–based digital PET/CT (dPET) promises enhanced image quality, but its performance in pediatric epilepsy remains untested. Methods: We retrospectively analyzed 22 children (mean age 11.5 ± 2.6 years) who underwent interictal brain 18F-FDG PET/CT: 11 on an analog system (Discovery ST, 2018–2019) and 11 on a digital system (Biograph Vision 450, 2020–2021). Three blinded nuclear medicine physicians independently scored EZ localization and image quality (4-point scale); post-surgical histology and ≥1-year clinical follow-up served as reference. Results: The EZ was correctly identified in 8/11 analog scans (72.7%) versus 10/11 digital scans (90.9%). Average image quality was significantly higher with dPET (3.0 ± 0.9 vs. 2.1 ± 0.9; p < 0.05), and inter-reader agreement improved from good (ICC = 0.63) to excellent (ICC = 0.91). Conclusions: Our preliminary findings suggest that dPET enhances image clarity and reader consistency, potentially improving localization accuracy in pediatric epilepsy presurgical workups.
Bagni, O., Danieli, R., Bianconi, F., Palumbo, B., Filippi, L. (2025). Clinical Performance of Analog and Digital 18F-FDG PET/CT in Pediatric Epileptogenic Zone Localization: Preliminary Results. BIOMEDICINES, 13(8), 1-13 [10.3390/biomedicines13081887].
Clinical Performance of Analog and Digital 18F-FDG PET/CT in Pediatric Epileptogenic Zone Localization: Preliminary Results
Filippi, Luca
2025-08-02
Abstract
Background: Despite its central role in pediatric pre-surgical evaluation of drug-resistant focal epilepsy, conventional analog 18F-fluorodeoxyglucose (18F-FDG) PET/CT (aPET) systems often yield modest epileptogenic zone (EZ) detection rates (~50–60%). Silicon photomultiplier–based digital PET/CT (dPET) promises enhanced image quality, but its performance in pediatric epilepsy remains untested. Methods: We retrospectively analyzed 22 children (mean age 11.5 ± 2.6 years) who underwent interictal brain 18F-FDG PET/CT: 11 on an analog system (Discovery ST, 2018–2019) and 11 on a digital system (Biograph Vision 450, 2020–2021). Three blinded nuclear medicine physicians independently scored EZ localization and image quality (4-point scale); post-surgical histology and ≥1-year clinical follow-up served as reference. Results: The EZ was correctly identified in 8/11 analog scans (72.7%) versus 10/11 digital scans (90.9%). Average image quality was significantly higher with dPET (3.0 ± 0.9 vs. 2.1 ± 0.9; p < 0.05), and inter-reader agreement improved from good (ICC = 0.63) to excellent (ICC = 0.91). Conclusions: Our preliminary findings suggest that dPET enhances image clarity and reader consistency, potentially improving localization accuracy in pediatric epilepsy presurgical workups.| File | Dimensione | Formato | |
|---|---|---|---|
|
biomedicines-13-01887 (1).pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.28 MB
Formato
Adobe PDF
|
1.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


