We prove that the Torelli, Prym and spin-Torelli morphisms, as well as covering maps between moduli stacks of smooth projective curves, cannot be deformed. The proofs use properties of the Fujita decomposition of the Hodge bundle of families of curves.

Codogni, G., Gonzalez Alonso, V., Torelli, S. (2025). Rigidity of modular morphisms via Fujita decomposition. ALGEBRA & NUMBER THEORY, 19(9), 1671-1683 [10.2140/ant.2025.19.1671].

Rigidity of modular morphisms via Fujita decomposition

Codogni G.;
2025-01-01

Abstract

We prove that the Torelli, Prym and spin-Torelli morphisms, as well as covering maps between moduli stacks of smooth projective curves, cannot be deformed. The proofs use properties of the Fujita decomposition of the Hodge bundle of families of curves.
2025
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03
Settore MATH-02/B - Geometria
English
Con Impact Factor ISI
abelian varieties
curves
Fujita decomposition
moduli spaces
rigidity of period maps
Codogni, G., Gonzalez Alonso, V., Torelli, S. (2025). Rigidity of modular morphisms via Fujita decomposition. ALGEBRA & NUMBER THEORY, 19(9), 1671-1683 [10.2140/ant.2025.19.1671].
Codogni, G; Gonzalez Alonso, V; Torelli, S
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
ant-v19-n9-p01-s.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/429523
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact