Background/Objectives: Periodontitis and diabetes mellitus share a well-established bidirectional relationship, where hyperglycemia exacerbates periodontal inflammation, and periodontal disease further impairs glycemic control. Within the diabetic periodontal microenvironment, an imbalance between pro-inflammatory (M1) and anti-inflammatory (M2) macrophages promotes chronic inflammation, oxidative stress, delayed healing, and alveolar bone resorption. Resveratrol (RSV), a polyphenol with antioxidant, anti-inflammatory, and pro-osteogenic properties, holds potential to restore macrophage balance. However, its clinical application is limited by poor bioavailability and instability. This study aimed to develop and evaluate a novel RSV delivery system to overcome these limitations and promote periodontal tissue regeneration under diabetic conditions. Methods: A drug delivery system comprising RSV-loaded solid lipid nanoparticles embedded within a cross-linked hyaluronic acid hydrogel (RSV@CLgel) was formulated. The system was tested under hyperglycemic and inflammatory conditions for its effects on macrophage polarization, cytokine expression, oxidative stress, mitochondrial function, and osteoblast differentiation. Results: RSV@CLgel effectively suppressed pro-inflammatory cytokines (TNF-alpha, IL-1 beta, IL-6) while upregulating anti-inflammatory markers (IL-10, TGF-beta). It significantly reduced oxidative stress by decreasing ROS and lipid peroxidation levels and improved mitochondrial function and antioxidant enzyme activity. Furthermore, RSV@CLgel enhanced osteoblast differentiation, as evidenced by increased ALP activity, calcium nodule formation, and upregulation of osteogenic genes (COL-I, RUNX2, OCN, OPN). It also inhibited RANKL-induced osteoclastogenesis, contributing to alveolar bone preservation. Conclusions: The RSV@CLgel delivery system presents a promising multifunctional strategy for the management of diabetic periodontitis. By modulating immune responses, reducing oxidative stress, and promoting periodontal tissue regeneration, RSV@CLgel addresses key pathological aspects of diabetes-associated periodontal disease.

Conte, R., Valentino, A., Sepe, F., Gianfreda, F., Condò, R., Cerroni, L., et al. (2025). Resveratrol-Loaded Solid Lipid Nanoparticles Reinforced Hyaluronic Hydrogel: Multitarget Strategy for the Treatment of Diabetes-Related Periodontitis. BIOMEDICINES, 13(5), 1-24 [10.3390/biomedicines13051059].

Resveratrol-Loaded Solid Lipid Nanoparticles Reinforced Hyaluronic Hydrogel: Multitarget Strategy for the Treatment of Diabetes-Related Periodontitis

Conte R.;Gianfreda F.;Condò R.;Cerroni L.;
2025-01-01

Abstract

Background/Objectives: Periodontitis and diabetes mellitus share a well-established bidirectional relationship, where hyperglycemia exacerbates periodontal inflammation, and periodontal disease further impairs glycemic control. Within the diabetic periodontal microenvironment, an imbalance between pro-inflammatory (M1) and anti-inflammatory (M2) macrophages promotes chronic inflammation, oxidative stress, delayed healing, and alveolar bone resorption. Resveratrol (RSV), a polyphenol with antioxidant, anti-inflammatory, and pro-osteogenic properties, holds potential to restore macrophage balance. However, its clinical application is limited by poor bioavailability and instability. This study aimed to develop and evaluate a novel RSV delivery system to overcome these limitations and promote periodontal tissue regeneration under diabetic conditions. Methods: A drug delivery system comprising RSV-loaded solid lipid nanoparticles embedded within a cross-linked hyaluronic acid hydrogel (RSV@CLgel) was formulated. The system was tested under hyperglycemic and inflammatory conditions for its effects on macrophage polarization, cytokine expression, oxidative stress, mitochondrial function, and osteoblast differentiation. Results: RSV@CLgel effectively suppressed pro-inflammatory cytokines (TNF-alpha, IL-1 beta, IL-6) while upregulating anti-inflammatory markers (IL-10, TGF-beta). It significantly reduced oxidative stress by decreasing ROS and lipid peroxidation levels and improved mitochondrial function and antioxidant enzyme activity. Furthermore, RSV@CLgel enhanced osteoblast differentiation, as evidenced by increased ALP activity, calcium nodule formation, and upregulation of osteogenic genes (COL-I, RUNX2, OCN, OPN). It also inhibited RANKL-induced osteoclastogenesis, contributing to alveolar bone preservation. Conclusions: The RSV@CLgel delivery system presents a promising multifunctional strategy for the management of diabetic periodontitis. By modulating immune responses, reducing oxidative stress, and promoting periodontal tissue regeneration, RSV@CLgel addresses key pathological aspects of diabetes-associated periodontal disease.
2025
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MEDS-16/A - Malattie odontostomatologiche
English
anti-inflammatory therapy
antioxidant therapy
bone regeneration
controlled drug delivery
diabetes-related periodontitis
hyaluronic acid hydrogel
resveratrol
solid lipid nanoparticles
Conte, R., Valentino, A., Sepe, F., Gianfreda, F., Condò, R., Cerroni, L., et al. (2025). Resveratrol-Loaded Solid Lipid Nanoparticles Reinforced Hyaluronic Hydrogel: Multitarget Strategy for the Treatment of Diabetes-Related Periodontitis. BIOMEDICINES, 13(5), 1-24 [10.3390/biomedicines13051059].
Conte, R; Valentino, A; Sepe, F; Gianfreda, F; Condò, R; Cerroni, L; Calarco, A; Peluso, G
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Resvetarol biomedicines-13-01059.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.2 MB
Formato Adobe PDF
4.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/427327
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact