We investigate the Bose-Einstein Condensation on nonhomogeneous amenable networks for the model describing arrays of Josephson junctions. The resulting topological model, whose Hamiltonian is the pure hopping one given by the opposite of the adjacency operator, has also a mathematical interest in itself. We show that for the nonhomogeneous networks like the comb graphs, particles condensate in momentum and configuration space as well. In this case different properties of the network, of geometric and probabilistic nature, such as the volume growth, the shape of the ground state, and the transience, all play a role in the condensation phenomena. The situation is quite different for homogeneous networks where just one of these parameters, e.g. the volume growth, is enough to determine the appearance of the condensa

Fidaleo, F., Guido, D., Isola, T. (2011). Bose Einstein condensation on inhomogeneous amenable graphs. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 14(02), 149-197 [10.1142/S0219025711004389].

Bose Einstein condensation on inhomogeneous amenable graphs

FIDALEO, FRANCESCO;GUIDO, DANIELE;ISOLA, TOMMASO
2011-06-01

Abstract

We investigate the Bose-Einstein Condensation on nonhomogeneous amenable networks for the model describing arrays of Josephson junctions. The resulting topological model, whose Hamiltonian is the pure hopping one given by the opposite of the adjacency operator, has also a mathematical interest in itself. We show that for the nonhomogeneous networks like the comb graphs, particles condensate in momentum and configuration space as well. In this case different properties of the network, of geometric and probabilistic nature, such as the volume growth, the shape of the ground state, and the transience, all play a role in the condensation phenomena. The situation is quite different for homogeneous networks where just one of these parameters, e.g. the volume growth, is enough to determine the appearance of the condensa
giu-2011
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
Fidaleo, F., Guido, D., Isola, T. (2011). Bose Einstein condensation on inhomogeneous amenable graphs. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 14(02), 149-197 [10.1142/S0219025711004389].
Fidaleo, F; Guido, D; Isola, T
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
110414FGIs01.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Licenza: Copyright dell'editore
Dimensione 432.85 kB
Formato Adobe PDF
432.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/42687
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact