In this paper, we explore polynomial accelerators that are well-suited for parallel computations, specifically as smoothers in Algebraic MultiGrid (AMG) preconditioners for symmetric positive definite matrices. These accelerators address a minimax problem, initially formulated in Lottes (Numer. Lin. Alg. with Appl. 30(6), e2518 2023), aiming to achieve an optimal (or near-optimal) bound for a polynomial-dependent constant involved in the AMG V-cycle error bound, without requiring information about the matrices’ spectra. Lottes focuses on Chebyshev polynomials of the 4th-kind and defines the relevant recurrence formulas applicable to a general convergent basic smoother. In this paper, we demonstrate the efficacy of these accelerations for large-scale applications on modern GPU-accelerated supercomputers. Furthermore, we formulate a variant of the aforementioned minimax problem, which naturally leads to solutions relying on Chebyshev polynomials of the 1st-kind as accelerators for a basic smoother. For all the polynomial accelerations, we describe efficient GPU kernels for their application and demonstrate their comparable effectiveness on standard benchmarks at very large scales.
D'Ambra, P., Durastante, F., Filippone, S., Massei, S., Thomas, S. (2025). Optimal polynomial smoothers for parallel AMG. NUMERICAL ALGORITHMS [10.1007/s11075-025-02117-6].
Optimal polynomial smoothers for parallel AMG
Filippone, Salvatore;
2025-01-01
Abstract
In this paper, we explore polynomial accelerators that are well-suited for parallel computations, specifically as smoothers in Algebraic MultiGrid (AMG) preconditioners for symmetric positive definite matrices. These accelerators address a minimax problem, initially formulated in Lottes (Numer. Lin. Alg. with Appl. 30(6), e2518 2023), aiming to achieve an optimal (or near-optimal) bound for a polynomial-dependent constant involved in the AMG V-cycle error bound, without requiring information about the matrices’ spectra. Lottes focuses on Chebyshev polynomials of the 4th-kind and defines the relevant recurrence formulas applicable to a general convergent basic smoother. In this paper, we demonstrate the efficacy of these accelerations for large-scale applications on modern GPU-accelerated supercomputers. Furthermore, we formulate a variant of the aforementioned minimax problem, which naturally leads to solutions relying on Chebyshev polynomials of the 1st-kind as accelerators for a basic smoother. For all the polynomial accelerations, we describe efficient GPU kernels for their application and demonstrate their comparable effectiveness on standard benchmarks at very large scales.| File | Dimensione | Formato | |
|---|---|---|---|
|
s11075-025-02117-6.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
1.02 MB
Formato
Adobe PDF
|
1.02 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


