Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the selective loss of motor neurons. The contribution of peripheral organs remains incompletely understood. We focused our attention on brown adipose tissue (BAT) and its secreted extracellular vesicles (EVs) given their role in regulating systemic energy balance. In this study, we employed a multi-omics approach, including RNA sequencing (GEO identifier GSE273052) and proteomics (ProteomeXchange identifier PXD054147), to investigate the alterations in BAT and its EVs in the SOD1-G93A mouse model of ALS. Our results revealed consistent changes in the proteomic and transcriptomic profiles of BAT from SOD1-G93A mice, highlighting alterations such as mitochondrial dysfunction and impaired differentiation capacity. Specifically, primary brown adipocytes (PBAs) from SOD1-G93A mice exhibited differentiation impairment, respiratory defects, and alterations in mitochondrial dynamics. Furthermore, the BAT-derived EVs from SOD1-G93A mice displayed distinct changes in size distribution and cargo content. In parallel, such EVs negatively impacted the differentiation and homeostasis of C2C12 murine myoblasts, as well as induced atrophy in C2C12-derived myotubes. These findings suggest that BAT undergoes pathological perturbations in ALS mouse model and could impact on skeletal muscle homeostasis through the secretion of dysfunctional EVs.

Rosina, M., Scaricamazza, S., Riggio, F., Fenili, G., Giannessi, F., Matteocci, A., et al. (2025). Brown Adipose Tissue undergoes pathological perturbations and shapes C2C12 myoblast homeostasis in the SOD1-G93A mouse model of Amyotrophic Lateral Sclerosis. HELIYON, 11(3) [10.1016/j.heliyon.2025.e41801].

Brown Adipose Tissue undergoes pathological perturbations and shapes C2C12 myoblast homeostasis in the SOD1-G93A mouse model of Amyotrophic Lateral Sclerosis

Marco Rosina;Silvia Scaricamazza;Alessandro Matteocci;Valentina Nesci;Katia Aquilano;Daniele Lettieri Barbato;Nicola Biagio Mercuri;
2025-01-01

Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the selective loss of motor neurons. The contribution of peripheral organs remains incompletely understood. We focused our attention on brown adipose tissue (BAT) and its secreted extracellular vesicles (EVs) given their role in regulating systemic energy balance. In this study, we employed a multi-omics approach, including RNA sequencing (GEO identifier GSE273052) and proteomics (ProteomeXchange identifier PXD054147), to investigate the alterations in BAT and its EVs in the SOD1-G93A mouse model of ALS. Our results revealed consistent changes in the proteomic and transcriptomic profiles of BAT from SOD1-G93A mice, highlighting alterations such as mitochondrial dysfunction and impaired differentiation capacity. Specifically, primary brown adipocytes (PBAs) from SOD1-G93A mice exhibited differentiation impairment, respiratory defects, and alterations in mitochondrial dynamics. Furthermore, the BAT-derived EVs from SOD1-G93A mice displayed distinct changes in size distribution and cargo content. In parallel, such EVs negatively impacted the differentiation and homeostasis of C2C12 murine myoblasts, as well as induced atrophy in C2C12-derived myotubes. These findings suggest that BAT undergoes pathological perturbations in ALS mouse model and could impact on skeletal muscle homeostasis through the secretion of dysfunctional EVs.
2025
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/10
Settore BIOS-07/A - Biochimica
English
Rosina, M., Scaricamazza, S., Riggio, F., Fenili, G., Giannessi, F., Matteocci, A., et al. (2025). Brown Adipose Tissue undergoes pathological perturbations and shapes C2C12 myoblast homeostasis in the SOD1-G93A mouse model of Amyotrophic Lateral Sclerosis. HELIYON, 11(3) [10.1016/j.heliyon.2025.e41801].
Rosina, M; Scaricamazza, S; Riggio, F; Fenili, G; Giannessi, F; Matteocci, A; Nesci, V; Salvatori, I; Angelini, Df; Aquilano, K; Chiurchiù, V; Lettie...espandi
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
101. (2025) Rosina et al (2025)_Heliyon_compressed.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/425123
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact