We analyze the set of locally normal KMS states w.r.t. the translation group for a local conformal net A of von Neumann algebras on R. In this first part, we focus on completely rational net A. Our main result here states that, if A is completely rational, there exists exactly one locally normal KMS state \phi. Moreover, \phi is canonically constructed by a geometric procedure. A crucial r\^ole is played by the analysis of the "thermal completion net" associated with a locally normal KMS state. A similar uniqueness result holds for KMS states of two-dimensional local conformal nets w.r.t. the time-translation one-parameter group

Camassa, P., Longo, R., Tanimoto, Y., Weiner, M. (2011). Thermal states in conformal QFT. I. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 309(3), 703-735 [10.1007/s00220-011-1337-3].

Thermal states in conformal QFT. I

CAMASSA, PAOLO;LONGO, ROBERTO;Tanimoto, Y;
2011-01-01

Abstract

We analyze the set of locally normal KMS states w.r.t. the translation group for a local conformal net A of von Neumann algebras on R. In this first part, we focus on completely rational net A. Our main result here states that, if A is completely rational, there exists exactly one locally normal KMS state \phi. Moreover, \phi is canonically constructed by a geometric procedure. A crucial r\^ole is played by the analysis of the "thermal completion net" associated with a locally normal KMS state. A similar uniqueness result holds for KMS states of two-dimensional local conformal nets w.r.t. the time-translation one-parameter group
2011
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Operator Algebras, Quantum Field Theory, Mathematical Physics
Camassa, P., Longo, R., Tanimoto, Y., Weiner, M. (2011). Thermal states in conformal QFT. I. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 309(3), 703-735 [10.1007/s00220-011-1337-3].
Camassa, P; Longo, R; Tanimoto, Y; Weiner, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
CLTW11ThermalStatesI.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Licenza: Copyright dell'editore
Dimensione 581.93 kB
Formato Adobe PDF
581.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

Questo articolo è pubblicato sotto una Licenza Licenza Creative Commons Creative Commons

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/42190
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact