Several multisatellite and multispot systems have been recently proposed for provision of mobile and personal services with global coverage, adopting GEO or non-GEO (i.e., MEO, LEO) satellite constellations. The paper addresses an in-depth analysis of these constellations, evaluating both geometrical performance measures and cochannel interference levels caused by extensive frequency reuse. The geometrical analysis yields the statistics for coverage, frequency of satellite hand-overs, and link absence periods. The interference analysis is based on a general model valid for all access techniques, which is here applied to the case of FDMA. The outage probability as a function of the specification on carrier-to-interference power ratio is evaluated for four selected constellations. Several techniques are introduced for interference reduction in non-GEO systems, in which the satellites coverage areas may intersect: spot turnoff, intraorbital plane frequency division, and interorbital plane frequency division. The effects of Rice fading have also been analyzed by means of an analytic approximated method. The overall analysis allows a fair comparison between LEO, MEO, and GEO constellations.
Vatalaro, F., Corazza, G.e., Caini, C., Ferrarelli, C. (1995). Analysis of LEO, MEO, and GEO global mobile satellite systems in the presence of interference and fading. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 13(2), 291-300 [10.1109/49.345873].
Analysis of LEO, MEO, and GEO global mobile satellite systems in the presence of interference and fading
VATALARO, FRANCESCO;CORAZZA, GIOVANNI EMANUELE;
1995-01-01
Abstract
Several multisatellite and multispot systems have been recently proposed for provision of mobile and personal services with global coverage, adopting GEO or non-GEO (i.e., MEO, LEO) satellite constellations. The paper addresses an in-depth analysis of these constellations, evaluating both geometrical performance measures and cochannel interference levels caused by extensive frequency reuse. The geometrical analysis yields the statistics for coverage, frequency of satellite hand-overs, and link absence periods. The interference analysis is based on a general model valid for all access techniques, which is here applied to the case of FDMA. The outage probability as a function of the specification on carrier-to-interference power ratio is evaluated for four selected constellations. Several techniques are introduced for interference reduction in non-GEO systems, in which the satellites coverage areas may intersect: spot turnoff, intraorbital plane frequency division, and interorbital plane frequency division. The effects of Rice fading have also been analyzed by means of an analytic approximated method. The overall analysis allows a fair comparison between LEO, MEO, and GEO constellations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.