Both chemical compositions of ionomers and surface properties of nanofillers significantly impact the performances of composite proton exchange membranes (PEMs) for water electrolysis. Despite progress in optimizing the chemical compositions of ionomers, it remains challenging to rationally modulate the micro/nano interface between nanofillers and ionomers due to the undesirable surface functionalization of nanofillers. In this study, core-shell silica@poly(1-vinylimidazole) (SiO2@PVI) nanoparticles with tunable grafting densities are fabricated via sonochemical technique and incorporated into sulfonated polysulfone (SPSF60) ionomer. The SiO2@PVI nanoparticles strengthen the interfacial hydrogen bond with SPSF60 by elevating the surface tethered imidazole groups, yielding a customizable interfacial network that further boosts the proton conductivity and stability of SPSF60/SiO2@PVI membranes. As a result, integrating the SPSF60/SiO2@PVI-12C membrane into a water electrolyzer achieves an exceptional operating current density of 5.84 A/cm2 at 2.0 V and 80 °C, which is 31.2 % higher than that with pure SPSF60. Moreover, the electrolyzer's durability is doubled due to the enhanced stability of the modified membrane. This study underscores the critical role of ionomer/filler interfacial structure on properties of composite PEMs, presenting an effective strategy to enhance the performance of proton exchange membranes for water electrolysis through interface modulation.

Zhang, Z., Xiang, Z., Qu, F., Wang, J., Yang, H., Li, J., et al. (2025). Sulfonated polysulfone composite membranes with tailored interfacial hydrogen bond network for efficient proton exchange membrane water electrolysis. JOURNAL OF MEMBRANE SCIENCE, 722 [10.1016/j.memsci.2025.123885].

Sulfonated polysulfone composite membranes with tailored interfacial hydrogen bond network for efficient proton exchange membrane water electrolysis

Barbara Mecheri;Alessandra D'Epifanio;
2025-01-01

Abstract

Both chemical compositions of ionomers and surface properties of nanofillers significantly impact the performances of composite proton exchange membranes (PEMs) for water electrolysis. Despite progress in optimizing the chemical compositions of ionomers, it remains challenging to rationally modulate the micro/nano interface between nanofillers and ionomers due to the undesirable surface functionalization of nanofillers. In this study, core-shell silica@poly(1-vinylimidazole) (SiO2@PVI) nanoparticles with tunable grafting densities are fabricated via sonochemical technique and incorporated into sulfonated polysulfone (SPSF60) ionomer. The SiO2@PVI nanoparticles strengthen the interfacial hydrogen bond with SPSF60 by elevating the surface tethered imidazole groups, yielding a customizable interfacial network that further boosts the proton conductivity and stability of SPSF60/SiO2@PVI membranes. As a result, integrating the SPSF60/SiO2@PVI-12C membrane into a water electrolyzer achieves an exceptional operating current density of 5.84 A/cm2 at 2.0 V and 80 °C, which is 31.2 % higher than that with pure SPSF60. Moreover, the electrolyzer's durability is doubled due to the enhanced stability of the modified membrane. This study underscores the critical role of ionomer/filler interfacial structure on properties of composite PEMs, presenting an effective strategy to enhance the performance of proton exchange membranes for water electrolysis through interface modulation.
2025
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore CHIM/07
Settore CHEM-06/A - Fondamenti chimici delle tecnologie
English
Con Impact Factor ISI
Interfacial hydrogen bond
Proton conductivity
Stability
Sulfonated polysulfone
water electrolysis
Zhang, Z., Xiang, Z., Qu, F., Wang, J., Yang, H., Li, J., et al. (2025). Sulfonated polysulfone composite membranes with tailored interfacial hydrogen bond network for efficient proton exchange membrane water electrolysis. JOURNAL OF MEMBRANE SCIENCE, 722 [10.1016/j.memsci.2025.123885].
Zhang, Z; Xiang, Z; Qu, F; Wang, J; Yang, H; Li, J; Mecheri, B; D'Epifanio, A; Ou, T; Chen, F; Ma, X
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Zhang_JMembSci_2025.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/420625
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact