We show how the R-polynomials of the symmetric groups can be computed, in a poset-theoretic way, from canonical hypercube decompositions. This involves a new combinatorial concept, which we call a shortcut. We conjecture that the same formula holds for a certain class of combinatorially defined hypercube decompositions. We also study the behavior of these concepts under the operation of taking the direct product of two Bruhat intervals, and characterize the shortcuts of the canonical hypercube decompositions. Our main conjecture implies the Combinatorial Invariance Conjecture.

Brenti, F., Marietti, M. (2025). Kazhdan–Lusztig R-polynomials, combinatorial invariance, and hypercube decompositions. MATHEMATISCHE ZEITSCHRIFT, 309(2) [10.1007/s00209-024-03632-3].

Kazhdan–Lusztig R-polynomials, combinatorial invariance, and hypercube decompositions

Francesco Brenti
;
2025-01-01

Abstract

We show how the R-polynomials of the symmetric groups can be computed, in a poset-theoretic way, from canonical hypercube decompositions. This involves a new combinatorial concept, which we call a shortcut. We conjecture that the same formula holds for a certain class of combinatorially defined hypercube decompositions. We also study the behavior of these concepts under the operation of taking the direct product of two Bruhat intervals, and characterize the shortcuts of the canonical hypercube decompositions. Our main conjecture implies the Combinatorial Invariance Conjecture.
2025
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/02
Settore MATH-02/A - Algebra
English
Con Impact Factor ISI
Combinatorial invariance conjecture
Hypercube decomposition
Kazhdan–Lusztig polynomials
Shortcut
Symmetric group
https://link.springer.com/article/10.1007/s00209-024-03632-3
https://www.mat.uniroma2.it/~brenti/66.pdf
Brenti, F., Marietti, M. (2025). Kazhdan–Lusztig R-polynomials, combinatorial invariance, and hypercube decompositions. MATHEMATISCHE ZEITSCHRIFT, 309(2) [10.1007/s00209-024-03632-3].
Brenti, F; Marietti, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Jart66.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 375.12 kB
Formato Adobe PDF
375.12 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/419384
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact