Subdivision schemes are popular iterative processes to build graphs of functions, curves and surfaces. We analyze the 2-point Hermite C^2 subdivision scheme introduced by Merrien. For the analysis of its convergence and its smoothness properties we are concerned with the computation of the joint spectral radius of a family of 2 matrices associated with the scheme. In this paper, by an explicit computation of the joint spectral radius of such pairs of matrices, we determine necessary and sufficient conditions for the scheme to be C^2 convergent, whenever it reproduces cubic polynomials. In addition, we present two one-parameter families of convergent subdivision schemes belonging to the considered class possessing interesting properties from the shape control point of view.

Guglielmi, N., Manni, C., Vitale, D. (2011). Convergence analysis of C^2 Hermite interpolatory subdivision schemes by explicit joint spectral radius formulas. LINEAR ALGEBRA AND ITS APPLICATIONS, 434, 884-902 [10.1016/j.laa.2010.10.002].

Convergence analysis of C^2 Hermite interpolatory subdivision schemes by explicit joint spectral radius formulas

MANNI, CARLA;
2011-01-01

Abstract

Subdivision schemes are popular iterative processes to build graphs of functions, curves and surfaces. We analyze the 2-point Hermite C^2 subdivision scheme introduced by Merrien. For the analysis of its convergence and its smoothness properties we are concerned with the computation of the joint spectral radius of a family of 2 matrices associated with the scheme. In this paper, by an explicit computation of the joint spectral radius of such pairs of matrices, we determine necessary and sufficient conditions for the scheme to be C^2 convergent, whenever it reproduces cubic polynomials. In addition, we present two one-parameter families of convergent subdivision schemes belonging to the considered class possessing interesting properties from the shape control point of view.
2011
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/08 - ANALISI NUMERICA
English
Con Impact Factor ISI
Joint spectral radius; Subdivision; Hermite interpolation
Guglielmi, N., Manni, C., Vitale, D. (2011). Convergence analysis of C^2 Hermite interpolatory subdivision schemes by explicit joint spectral radius formulas. LINEAR ALGEBRA AND ITS APPLICATIONS, 434, 884-902 [10.1016/j.laa.2010.10.002].
Guglielmi, N; Manni, C; Vitale, D
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
LAA_10855_pubblicato.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Licenza: Copyright dell'editore
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

Questo articolo è pubblicato sotto una Licenza Licenza Creative Commons Creative Commons

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/41714
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact