In this paper, we study two variants of the problem of adding edges to a graph so as to reduce the resulting diameter. More precisely, given a graph G=(V,E), and two positive integers D and B, the Minimum-Cardinality Bounded-Diameter Edge Addition (MCBD) problem is to find a minimum-cardinality set F of edges to be added to G in such a way that the diameter of G+F is less than or equal to D, while the Bounded-Cardinality Minimum-Diameter Edge Addition (BCMD) problem is to find a set F of B edges to be added to G in such a way that the diameter of G+F is minimized. Both problems are well known to be NP-hard, as well as approximable within O(lognlogD) and 4 (up to an additive term of 2), respectively. In this paper, we improve these long-standing approximation ratios to O(logn) and to 2 (up to an additive term of 2), respectively. As a consequence, we close, in an asymptotic sense, the gap on the approximability of MCBD, which was known to be not approximable within clogn, for some constant c>0, unless P=NP. Remarkably, as we further show in the paper, our approximation ratio remains asymptotically tight even if we allow for a solution whose diameter is optimal up to a multiplicative factor approaching 53. On the other hand, on the positive side, we show that at most twice of the minimal number of additional edges suffices to get at most twice of the required diameter. Some of our results extend to the edge-weighted version of the problems.

Bilò, D., Guala', L., Proietti, G. (2012). Improved approximability and non-approximability results for graph diameter decreasing problems. THEORETICAL COMPUTER SCIENCE, 417(2) [10.1016/j.tcs.2011.05.014].

Improved approximability and non-approximability results for graph diameter decreasing problems

GUALA', LUCIANO;
2012-01-01

Abstract

In this paper, we study two variants of the problem of adding edges to a graph so as to reduce the resulting diameter. More precisely, given a graph G=(V,E), and two positive integers D and B, the Minimum-Cardinality Bounded-Diameter Edge Addition (MCBD) problem is to find a minimum-cardinality set F of edges to be added to G in such a way that the diameter of G+F is less than or equal to D, while the Bounded-Cardinality Minimum-Diameter Edge Addition (BCMD) problem is to find a set F of B edges to be added to G in such a way that the diameter of G+F is minimized. Both problems are well known to be NP-hard, as well as approximable within O(lognlogD) and 4 (up to an additive term of 2), respectively. In this paper, we improve these long-standing approximation ratios to O(logn) and to 2 (up to an additive term of 2), respectively. As a consequence, we close, in an asymptotic sense, the gap on the approximability of MCBD, which was known to be not approximable within clogn, for some constant c>0, unless P=NP. Remarkably, as we further show in the paper, our approximation ratio remains asymptotically tight even if we allow for a solution whose diameter is optimal up to a multiplicative factor approaching 53. On the other hand, on the positive side, we show that at most twice of the minimal number of additional edges suffices to get at most twice of the required diameter. Some of our results extend to the edge-weighted version of the problems.
2012
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore INF/01 - INFORMATICA
English
Bilò, D., Guala', L., Proietti, G. (2012). Improved approximability and non-approximability results for graph diameter decreasing problems. THEORETICAL COMPUTER SCIENCE, 417(2) [10.1016/j.tcs.2011.05.014].
Bilò, D; Guala', L; Proietti, G
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
TCS2012.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 360.54 kB
Formato Adobe PDF
360.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/41601
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 33
social impact