Epstein-Barr Virus (EBV) is involved in the progression of lymphomas through still unknown mechanism involving increased resistance to induced apoptosis. We show here that in a set of apoptosis-resistant EBV-converted Burkitt's lymphoma clones, 5- and 12-lipoxygenases (LOXs) are over-expressed. Further investigations on 5-LOX showed that resistance to apoptosis increases parallely with the expression of 5-lipoxygenase (5-LOX). Inhibitors of 5-LOX: (a) decrease peroxides level, indicating that this enzyme promotes the generation of oxidative stress in EBV+ cells, and (b) potently induce apoptosis in the EBV resistant cell line E2R. 5- and 15-HETE, the products of the 5 and 15-LOXs, respectively, counteract 5-LOX inhibitor induced apoptosis, indicating that products of arachidonate metabolism, rather than peroxides, trigger a signal transduction that is required for survival of the EBV-converted cells. These findings suggest that 5- and, to a lesser extent, other LOXs, that are involved in tumor progression of several cell types, may also participate in lymphomagenesis, especially that EBV-mediated.
Belfiore, M., Natoni, A., Barzellotti, R., Merendino, N., Pessina, G., Ghibelli, L., et al. (2007). Involvement of 5-lipoxygenase in survival of Epstein-Barr virus (EBV)-converted B lymphoma cells. CANCER LETTERS, 254(2), 236-243 [10.1016/j.canlet.2007.03.010].
Involvement of 5-lipoxygenase in survival of Epstein-Barr virus (EBV)-converted B lymphoma cells
GHIBELLI, LINA;
2007-09-08
Abstract
Epstein-Barr Virus (EBV) is involved in the progression of lymphomas through still unknown mechanism involving increased resistance to induced apoptosis. We show here that in a set of apoptosis-resistant EBV-converted Burkitt's lymphoma clones, 5- and 12-lipoxygenases (LOXs) are over-expressed. Further investigations on 5-LOX showed that resistance to apoptosis increases parallely with the expression of 5-lipoxygenase (5-LOX). Inhibitors of 5-LOX: (a) decrease peroxides level, indicating that this enzyme promotes the generation of oxidative stress in EBV+ cells, and (b) potently induce apoptosis in the EBV resistant cell line E2R. 5- and 15-HETE, the products of the 5 and 15-LOXs, respectively, counteract 5-LOX inhibitor induced apoptosis, indicating that products of arachidonate metabolism, rather than peroxides, trigger a signal transduction that is required for survival of the EBV-converted cells. These findings suggest that 5- and, to a lesser extent, other LOXs, that are involved in tumor progression of several cell types, may also participate in lymphomagenesis, especially that EBV-mediated.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.