Abstract. Inthisnoteweprovethatafinitefamily{X1,...,Xd}ofrealr.v.’s that is exchangeable and such that (X1, . . . , Xd) is invariant with respect to a subgroup of SO(d) acting irreducibly, is actually invariant with respect to the action of the full group SO(d). Three immediate consequences are deduced: a characterization of isotropic spherical random eigenfunctions whose Fourier coefficients are exchangeable, an extension of Bernstein’s characterization of the Gaussian and a characterization of the Lebesgue measure on the share.

Baldi, P., Marinucci, D., Trapani, S. (2025). Exchangeability and irreducible rotational invariance. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. SERIES B, 153(2), 513-521 [10.1090/proc/17058].

Exchangeability and irreducible rotational invariance

Baldi, P;Marinucci, D;
2025-01-01

Abstract

Abstract. Inthisnoteweprovethatafinitefamily{X1,...,Xd}ofrealr.v.’s that is exchangeable and such that (X1, . . . , Xd) is invariant with respect to a subgroup of SO(d) acting irreducibly, is actually invariant with respect to the action of the full group SO(d). Three immediate consequences are deduced: a characterization of isotropic spherical random eigenfunctions whose Fourier coefficients are exchangeable, an extension of Bernstein’s characterization of the Gaussian and a characterization of the Lebesgue measure on the share.
gen-2025
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MATH-02/B - Geometria
English
Con Impact Factor ISI
Group representations, exchangeability, invariant random fields, Fourier coefficients, random eigenfunctions, characterizations of the Gaussian.
Baldi, P., Marinucci, D., Trapani, S. (2025). Exchangeability and irreducible rotational invariance. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. SERIES B, 153(2), 513-521 [10.1090/proc/17058].
Baldi, P; Marinucci, D; Trapani, S
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Marin_Bald-Trap2025.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 188.91 kB
Formato Adobe PDF
188.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/415323
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact