Recent findings proposed that the cerebellum and the striatum, key structures in motor control, are more interconnected than commonly believed, and that the cerebellum may influence striatal activity. In the present study, the possible changes of synaptic transmission in the striatum of hemicerebellectomized rats have been investigated. Neurophysiological recordings showed a significant facilitation of glutamate transmission in the contralateral striatum occurring early following hemicerebellectomy. This process of synaptic adaptation appears to be relevant for the compensation of cerebellar deficits. Accordingly, pharmacological blockade of glutamate N-methyl-d-aspartate (NMDA) receptors with MK-801 prevented the rearrangement of excitatory synapses in the striatum and interfered with the recovery from motor disturbances in rats with cerebellar lesions. Hemicerebellectomy also perturbed gamma-aminobutyric acid (GABA) transmission in contralateral but not ipsilateral striatum. The present findings advance the role of striatal excitatory transmission in the compensation of cerebellar deficits, providing support to the notion that adaptations of striatal function exert a role in the recovery of cerebellar symptoms.

Centonze, D., Rossi, S., De Bartolo, P., De Chiara, V., Foti, F., Musella, A., et al. (2008). Adaptations of glutamatergic synapses in the striatum contribute to recovery from cerebellar damage. EUROPEAN JOURNAL OF NEUROSCIENCE, 27(8), 2188-2196 [10.1111/j.1460-9568.2008.06182.x].

Adaptations of glutamatergic synapses in the striatum contribute to recovery from cerebellar damage

CENTONZE, DIEGO;BERNARDI, GIORGIO;
2008-04-01

Abstract

Recent findings proposed that the cerebellum and the striatum, key structures in motor control, are more interconnected than commonly believed, and that the cerebellum may influence striatal activity. In the present study, the possible changes of synaptic transmission in the striatum of hemicerebellectomized rats have been investigated. Neurophysiological recordings showed a significant facilitation of glutamate transmission in the contralateral striatum occurring early following hemicerebellectomy. This process of synaptic adaptation appears to be relevant for the compensation of cerebellar deficits. Accordingly, pharmacological blockade of glutamate N-methyl-d-aspartate (NMDA) receptors with MK-801 prevented the rearrangement of excitatory synapses in the striatum and interfered with the recovery from motor disturbances in rats with cerebellar lesions. Hemicerebellectomy also perturbed gamma-aminobutyric acid (GABA) transmission in contralateral but not ipsilateral striatum. The present findings advance the role of striatal excitatory transmission in the compensation of cerebellar deficits, providing support to the notion that adaptations of striatal function exert a role in the recovery of cerebellar symptoms.
apr-2008
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MED/26 - NEUROLOGIA
English
Con Impact Factor ISI
Corpus Striatum; Male; Synapses; Dizocilpine Maleate; Rats, Wistar; Glutamine; Rats; Animals; Receptors, N-Methyl-D-Aspartate; Patch-Clamp Techniques; Cerebellum; Excitatory Postsynaptic Potentials; Excitatory Amino Acid Antagonists; Neural Pathways; Functional Laterality; gamma-Aminobutyric Acid; Synaptic Transmission
Centonze, D., Rossi, S., De Bartolo, P., De Chiara, V., Foti, F., Musella, A., et al. (2008). Adaptations of glutamatergic synapses in the striatum contribute to recovery from cerebellar damage. EUROPEAN JOURNAL OF NEUROSCIENCE, 27(8), 2188-2196 [10.1111/j.1460-9568.2008.06182.x].
Centonze, D; Rossi, S; De Bartolo, P; De Chiara, V; Foti, F; Musella, A; Mataluni, G; Rossi, S; Bernardi, G; Koch, G; Petrosini, L
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/41475
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 23
social impact