Suppose that A(1),..., A(N) are observables (selfadjoint matrices) and rho is a state (density matrix). In this case the standard uncertainty principle, proved by Robertson, gives a bound for the quantum generalized variance, namely for det{Cov(rho) (A(j), A(k) )}, using the commutators [A(j), A(k)]; this bound is trivial when N is odd. Recently a different inequality of Robertson-type has been proved by the authors with the help of the theory of operator monotone functions. In this case the bound makes use of the commutators [rho, A(j)] and is non-trivial for any N. In the present paper we generalize this new result to the von Neumann algebra case. Nevertheless the proof appears to simplify all the existing ones.

Gibilisco, P., Isola, T. (2008). A dynamical uncertainty principle in von Neumann algebras by operator monotone functions. JOURNAL OF STATISTICAL PHYSICS, 132(5), 937-944 [10.1007/s10955-008-9582-3].

A dynamical uncertainty principle in von Neumann algebras by operator monotone functions

GIBILISCO, PAOLO;ISOLA, TOMMASO
2008-01-01

Abstract

Suppose that A(1),..., A(N) are observables (selfadjoint matrices) and rho is a state (density matrix). In this case the standard uncertainty principle, proved by Robertson, gives a bound for the quantum generalized variance, namely for det{Cov(rho) (A(j), A(k) )}, using the commutators [A(j), A(k)]; this bound is trivial when N is odd. Recently a different inequality of Robertson-type has been proved by the authors with the help of the theory of operator monotone functions. In this case the bound makes use of the commutators [rho, A(j)] and is non-trivial for any N. In the present paper we generalize this new result to the von Neumann algebra case. Nevertheless the proof appears to simplify all the existing ones.
2008
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/06 - PROBABILITA' E STATISTICA MATEMATICA
English
Con Impact Factor ISI
operator monotone function; quantum Fisher information; uncertainty principle
Gibilisco, P., Isola, T. (2008). A dynamical uncertainty principle in von Neumann algebras by operator monotone functions. JOURNAL OF STATISTICAL PHYSICS, 132(5), 937-944 [10.1007/s10955-008-9582-3].
Gibilisco, P; Isola, T
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
JSP2008bis.pdf

accesso aperto

Dimensione 318.78 kB
Formato Adobe PDF
318.78 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/41288
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact