Electrochemical impedance spectroscopy (EIS) is widely used to probe the physical and chemical processes in lithium (Li)-ion batteries (LiBs). The key parameters include state-of-charge, rate capacity or power fade, degradation and temperature dependence, which are needed to inform battery management systems as well as for quality assurance and monitoring. All-solid-state batteries using a solid-state electrolyte (SE), promise greater energy densities via a Li metal anode as well as enhanced safety, but their development is in its nascent stages and the EIS measurement, cell set-up and modelling approach can be vastly different for various SE chemistries and cell configurations. This review aims to condense the current knowledge of EIS in the context of state-of-the-art solid-state electrolytes and batteries, with a view to advancing their scale-up from the laboratory to commercial deployment. Experimental and modelling best practices are highlighted, as well as emerging impedance methods for conventional LiBs as a guide for opportunities in the solid-state.
Vadhva, P., Hu, J., Johnson, M.j., Stocker, R., Braglia, M., Brett, D., et al. (2021). Electrochemical impedance spectroscopy for all‐solid‐state batteries: theory, methods and future outlook. CHEMELECTROCHEM, 8(11), 1930-1947 [10.1002/celc.202100108].
Electrochemical impedance spectroscopy for all‐solid‐state batteries: theory, methods and future outlook
Braglia, Michele;
2021-01-01
Abstract
Electrochemical impedance spectroscopy (EIS) is widely used to probe the physical and chemical processes in lithium (Li)-ion batteries (LiBs). The key parameters include state-of-charge, rate capacity or power fade, degradation and temperature dependence, which are needed to inform battery management systems as well as for quality assurance and monitoring. All-solid-state batteries using a solid-state electrolyte (SE), promise greater energy densities via a Li metal anode as well as enhanced safety, but their development is in its nascent stages and the EIS measurement, cell set-up and modelling approach can be vastly different for various SE chemistries and cell configurations. This review aims to condense the current knowledge of EIS in the context of state-of-the-art solid-state electrolytes and batteries, with a view to advancing their scale-up from the laboratory to commercial deployment. Experimental and modelling best practices are highlighted, as well as emerging impedance methods for conventional LiBs as a guide for opportunities in the solid-state.File | Dimensione | Formato | |
---|---|---|---|
ChemElectroChem - 2021 - Vadhva - Electrochemical Impedance Spectroscopy for All‐Solid‐State Batteries Theory Methods and.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
3.57 MB
Formato
Adobe PDF
|
3.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.