C-reactive protein (CRP) is associated with insulin resistance and predicts development of type 2 diabetes. However, it is unknown whether CRP directly affects insulin signalling action. To this aim, we determined the effects of human recombinant CRP (hrCRP) on insulin signalling involved in glucose transport in L6 myotubes. L6 myotubes were exposed to endotoxin-free hrCRP and insulin-stimulated activation of signal molecules, glucose uptake and glycogen synthesis were assessed. We found that hrCRP stimulates both c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK)1/2 activity. These effects were paralleled by a concomitant increase in IRS-1 phosphorylation at Ser(307) and Ser(612), respectively. The stimulatory effects of hrCRP on IRS-1 phosphorylation at Ser(307) and Ser(612) were partially reversed by treatment with specific JNK and ERK1/2 inhibitors, respectively. Exposure of L6 myotubes to hrCRP reduced insulin-stimulated phosphorylation of IRS-1 at Tyr(632), a site essential for engaging p85 subunit of phosphatidylinositol-3 kinase (PI-3K), protein kinase B (Akt) activation and glycogen synthase kinase-3 (GSK-3) phosphorylation. These events were accompanied by a decrease in insulin-stimulated glucose transporter (GLUT) 4 translocation to the plasma membrane, glucose uptake and glucose incorporation into glycogen. The inhibitory effects of hrCRP on insulin signalling and insulin-stimulated GLUT4 translocation were reversed by treatment with JNK inhibitor I and the mitogen-activated protein kinase inhibitor, PD98059. Our data suggest that hrCRP may cause insulin resistance by increasing IRS-1 phosphorylation at Ser(307) and Ser(612) via JNK and ERK1/2, respectively, leading to impaired insulin-stimulated glucose uptake, GLUT4 translocation, and glycogen synthesis mediated by the IRS-1/PI-3K/Akt/GSK-3 pathway.

D'Alessandris, C., Lauro, R., Presta, I., Sesti, G. (2007). C-reactive protein induces phosphorylation of insulin receptor substrate-1 on Ser(307) and Ser(612) in L6 myocytes, thereby impairing the insulin signalling pathway that promotes glucose transport. DIABETOLOGIA, 50(4), 840-849 [10.1007/s00125-006-0522-y].

C-reactive protein induces phosphorylation of insulin receptor substrate-1 on Ser(307) and Ser(612) in L6 myocytes, thereby impairing the insulin signalling pathway that promotes glucose transport

D'ALESSANDRIS, CRISTINA;LAURO, RENATO;SESTI, GIORGIO
2007-01-01

Abstract

C-reactive protein (CRP) is associated with insulin resistance and predicts development of type 2 diabetes. However, it is unknown whether CRP directly affects insulin signalling action. To this aim, we determined the effects of human recombinant CRP (hrCRP) on insulin signalling involved in glucose transport in L6 myotubes. L6 myotubes were exposed to endotoxin-free hrCRP and insulin-stimulated activation of signal molecules, glucose uptake and glycogen synthesis were assessed. We found that hrCRP stimulates both c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK)1/2 activity. These effects were paralleled by a concomitant increase in IRS-1 phosphorylation at Ser(307) and Ser(612), respectively. The stimulatory effects of hrCRP on IRS-1 phosphorylation at Ser(307) and Ser(612) were partially reversed by treatment with specific JNK and ERK1/2 inhibitors, respectively. Exposure of L6 myotubes to hrCRP reduced insulin-stimulated phosphorylation of IRS-1 at Tyr(632), a site essential for engaging p85 subunit of phosphatidylinositol-3 kinase (PI-3K), protein kinase B (Akt) activation and glycogen synthase kinase-3 (GSK-3) phosphorylation. These events were accompanied by a decrease in insulin-stimulated glucose transporter (GLUT) 4 translocation to the plasma membrane, glucose uptake and glucose incorporation into glycogen. The inhibitory effects of hrCRP on insulin signalling and insulin-stimulated GLUT4 translocation were reversed by treatment with JNK inhibitor I and the mitogen-activated protein kinase inhibitor, PD98059. Our data suggest that hrCRP may cause insulin resistance by increasing IRS-1 phosphorylation at Ser(307) and Ser(612) via JNK and ERK1/2, respectively, leading to impaired insulin-stimulated glucose uptake, GLUT4 translocation, and glycogen synthesis mediated by the IRS-1/PI-3K/Akt/GSK-3 pathway.
2007
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MED/09 - MEDICINA INTERNA
English
Con Impact Factor ISI
CRP; glucose transport; insulin resistance; insulin signalling
D'Alessandris, C., Lauro, R., Presta, I., Sesti, G. (2007). C-reactive protein induces phosphorylation of insulin receptor substrate-1 on Ser(307) and Ser(612) in L6 myocytes, thereby impairing the insulin signalling pathway that promotes glucose transport. DIABETOLOGIA, 50(4), 840-849 [10.1007/s00125-006-0522-y].
D'Alessandris, C; Lauro, R; Presta, I; Sesti, G
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/40996
Citazioni
  • ???jsp.display-item.citation.pmc??? 32
  • Scopus 91
  • ???jsp.display-item.citation.isi??? 87
social impact