The quantum duality principle (QDP) for homogeneous spaces gives four recipes to obtain, from a quantum homogeneous space, a dual one, in the sense of Poisson duality. One of these recipes fails (for lack of the initial ingredient) when the homogeneous space wevstart from is not a quasi-a ne variety. In this work we solve this problem for the quantum Grassmannian, a key example of quantum projective homogeneous space, providing a suitable analogue of the QDP recipe.
Gavarini, F., Fioresi, R. (2011). Quantum Duality Principle for Quantum Grassmannians. In M. MARCOLLI, D. PARASHAR (a cura di), "Quantum Groups and Noncommutative Spaces - Perspectives on Quantum Geometry" (pp. 80-95). WIESBADEN : Vieweg+Teubner Verlag [10.1007/978-3-8348-9831-9_4].
Quantum Duality Principle for Quantum Grassmannians
GAVARINI, FABIO;
2011-01-01
Abstract
The quantum duality principle (QDP) for homogeneous spaces gives four recipes to obtain, from a quantum homogeneous space, a dual one, in the sense of Poisson duality. One of these recipes fails (for lack of the initial ingredient) when the homogeneous space wevstart from is not a quasi-a ne variety. In this work we solve this problem for the quantum Grassmannian, a key example of quantum projective homogeneous space, providing a suitable analogue of the QDP recipe.File | Dimensione | Formato | |
---|---|---|---|
QDP-Grass_STA.pdf
solo utenti autorizzati
Descrizione: articolo principale
Licenza:
Copyright dell'editore
Dimensione
6.2 MB
Formato
Adobe PDF
|
6.2 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.