We study a finite-horizon differential game of pursuit-evasion like, between a single player and a mass of agents. The player and the mass directly control their own evolution, which for the mass is given by a first order PDE of transport equation type. Using also an adapted concept of non-anticipating strategies, we derive an infinite dimensional Isaacs equation, and by dynamic programming techniques we prove that the value function is the unique viscosity solution on a suitable invariant subset of a Hilbert space.

Bagagiolo, F., Capuani, R., Marzufero, L. (2024). A single player and a mass of agents: a pursuit evasion-like game. ESAIM. COCV, 30 [10.1051/cocv/2024009].

A single player and a mass of agents: a pursuit evasion-like game

Capuani, Rossana;
2024-01-01

Abstract

We study a finite-horizon differential game of pursuit-evasion like, between a single player and a mass of agents. The player and the mass directly control their own evolution, which for the mass is given by a first order PDE of transport equation type. Using also an adapted concept of non-anticipating strategies, we derive an infinite dimensional Isaacs equation, and by dynamic programming techniques we prove that the value function is the unique viscosity solution on a suitable invariant subset of a Hilbert space.
2024
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MATH-03/A - Analisi matematica
English
Continuity equation
Differential games
Infinite-dimensional Isaacs equation
Mass transportation
Mean-field
Pursuit-evasion games
Viscosity solution
Bagagiolo, F., Capuani, R., Marzufero, L. (2024). A single player and a mass of agents: a pursuit evasion-like game. ESAIM. COCV, 30 [10.1051/cocv/2024009].
Bagagiolo, F; Capuani, R; Marzufero, L
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
cocv230032.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 653.9 kB
Formato Adobe PDF
653.9 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/409443
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact