In this article we derive an (almost) optimal scaling law for a singular perturbation problem associated with the Tartar square. As in Winter (Eur J Appl Math 8(2):185–207, 1997), Chipot (Numer Math 83(3):325–352, 1999), our upper bound quantifies the well-known construction which is used in the literature to prove the flexibility of the Tartar square in the sense of the flexibility of approximate solutions to the differential inclusion. The main novelty of our article is the derivation of an (up to logarithmic powers matching) ansatz free lower bound which relies on a bootstrap argument in Fourier space and is related to a quantification of the interaction of a nonlinearity and a negative Sobolev space in the form of “a chain rule in a negative Sobolev space”. Both the lower and the upper bound arguments give evidence of the involved “infinite order of lamination”.

Rüland, A., Tribuzio, A. (2022). On the energy scaling behaviour of a singularly perturbed Tartar square. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 243(1), 401-431 [10.1007/s00205-021-01729-1].

On the energy scaling behaviour of a singularly perturbed Tartar square

Tribuzio, Antonio
2022-01-01

Abstract

In this article we derive an (almost) optimal scaling law for a singular perturbation problem associated with the Tartar square. As in Winter (Eur J Appl Math 8(2):185–207, 1997), Chipot (Numer Math 83(3):325–352, 1999), our upper bound quantifies the well-known construction which is used in the literature to prove the flexibility of the Tartar square in the sense of the flexibility of approximate solutions to the differential inclusion. The main novelty of our article is the derivation of an (up to logarithmic powers matching) ansatz free lower bound which relies on a bootstrap argument in Fourier space and is related to a quantification of the interaction of a nonlinearity and a negative Sobolev space in the form of “a chain rule in a negative Sobolev space”. Both the lower and the upper bound arguments give evidence of the involved “infinite order of lamination”.
2022
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MATH-03/A - Analisi matematica
English
Rüland, A., Tribuzio, A. (2022). On the energy scaling behaviour of a singularly perturbed Tartar square. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 243(1), 401-431 [10.1007/s00205-021-01729-1].
Rüland, A; Tribuzio, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
s00205-021-01729-1.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 926.46 kB
Formato Adobe PDF
926.46 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/409408
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact