In this paper, we study the hyperbolicity in the sense of Gromov of domains in R^d (d≥3) with respect to the minimal metric introduced by Forstnerič and Kalaj (Anal PDE 17(3):981–1003, 2024). In particular, we prove that every bounded strongly minimally convex domain is Gromov hyperbolic and its Gromov compactification is equivalent to its Euclidean closure. Moreover, we prove that the boundary of a Gromov hyperbolic convex domain does not contain non-trivial conformal harmonic disks. Finally, we study the relation between the minimal metric and the Hilbert metric in convex domains.

Fiacchi, M. (2024). On the Gromov hyperbolicity of the minimal metric. MATHEMATISCHE ZEITSCHRIFT, 308(2) [10.1007/s00209-024-03581-x].

On the Gromov hyperbolicity of the minimal metric

Fiacchi, Matteo
2024-01-01

Abstract

In this paper, we study the hyperbolicity in the sense of Gromov of domains in R^d (d≥3) with respect to the minimal metric introduced by Forstnerič and Kalaj (Anal PDE 17(3):981–1003, 2024). In particular, we prove that every bounded strongly minimally convex domain is Gromov hyperbolic and its Gromov compactification is equivalent to its Euclidean closure. Moreover, we prove that the boundary of a Gromov hyperbolic convex domain does not contain non-trivial conformal harmonic disks. Finally, we study the relation between the minimal metric and the Hilbert metric in convex domains.
2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MATH-02/B - Geometria
English
Con Impact Factor ISI
30C80; 31A05; 32Q45; 53A10; 53C23; Convex domain; Gromov hyperbolicity; Hilbert metric; Hyperbolic domain; Minimal metric; Minimal surface
Fiacchi, M. (2024). On the Gromov hyperbolicity of the minimal metric. MATHEMATISCHE ZEITSCHRIFT, 308(2) [10.1007/s00209-024-03581-x].
Fiacchi, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
s00209-024-03581-x.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 322.22 kB
Formato Adobe PDF
322.22 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/409403
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact