We propose a new computational framework, probabilistic transcriptome-wide association study (PTWAS), to investigate causal relationships between gene expressions and complex traits. PTWAS applies the established principles from instrumental variables analysis and takes advantage of probabilistic eQTL annotations to delineate and tackle the unique challenges arising in TWAS. PTWAS not only confers higher power than the existing methods but also provides novel functionalities to evaluate the causal assumptions and estimate tissue- or cell-type-specific gene-to-trait effects. We illustrate the power of PTWAS by analyzing the eQTL data across 49 tissues from GTEx (v8) and GWAS summary statistics from 114 complex traits.

Zhang, Y., Quick, C., Yu, K., Barbeira, A., Luca, F., Pique-Regi, R., et al. (2020). PTWAS: Investigating tissue-relevant causal molecular mechanisms of complex traits using probabilistic TWAS analysis. GENOME BIOLOGY, 21(1) [10.1186/s13059-020-02026-y].

PTWAS: Investigating tissue-relevant causal molecular mechanisms of complex traits using probabilistic TWAS analysis

Luca F.;
2020-01-01

Abstract

We propose a new computational framework, probabilistic transcriptome-wide association study (PTWAS), to investigate causal relationships between gene expressions and complex traits. PTWAS applies the established principles from instrumental variables analysis and takes advantage of probabilistic eQTL annotations to delineate and tackle the unique challenges arising in TWAS. PTWAS not only confers higher power than the existing methods but also provides novel functionalities to evaluate the causal assumptions and estimate tissue- or cell-type-specific gene-to-trait effects. We illustrate the power of PTWAS by analyzing the eQTL data across 49 tissues from GTEx (v8) and GWAS summary statistics from 114 complex traits.
2020
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore BIOS-14/A - Genetica
English
Causal inference
eQTLs
Genetic association
GWAS
Instrumental variable
TWAS
Zhang, Y., Quick, C., Yu, K., Barbeira, A., Luca, F., Pique-Regi, R., et al. (2020). PTWAS: Investigating tissue-relevant causal molecular mechanisms of complex traits using probabilistic TWAS analysis. GENOME BIOLOGY, 21(1) [10.1186/s13059-020-02026-y].
Zhang, Y; Quick, C; Yu, K; Barbeira, A; Luca, F; Pique-Regi, R; Kyung Im, H; Wen, X
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
s13059-020-02026-y.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.81 MB
Formato Adobe PDF
2.81 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/405646
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 45
social impact