LoRaWAN (Long 1 Range Wide Area Network) is an attractive network infrastructure and protocol suite for ultra low power Internet of Things devices. Even if the technology itself is quite mature and specified, the currently deployed wireless resource allocation strategies are still coarse and based on rough heuristics. This paper proposes an innovative 'sequential waterfilling' strategy for assigning spreading factors to End Devices. Our design relies on three complementary approaches: i) equalize the Time-on-Air of packets transmitted by the system's End Devices in each spreading factor's group; ii) balance the spreading factors across multiple gateways and iii) keep into account the channel capture, which our experimental results show to be very substantial in LoRa. While retaining an extremely simple and scalable implementation, this strategy yields a significant improvement (up to 38%) in the network capacity over the Adaptive Data Rate used by many network operators on the basis of the design suggested by Semtech, and appears to be extremely robust to different operating/load conditions and network topology configurations.

Garlisi, D., Tinnirello, I., Bianchi, G., Cuomo, F. (2021). Capture aware sequential waterfilling for LoRaWAN Adaptive Data Rate. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 20(3), 2019-2033 [10.1109/TWC.2020.3038638].

Capture aware sequential waterfilling for LoRaWAN Adaptive Data Rate

Bianchi G.;
2021-01-01

Abstract

LoRaWAN (Long 1 Range Wide Area Network) is an attractive network infrastructure and protocol suite for ultra low power Internet of Things devices. Even if the technology itself is quite mature and specified, the currently deployed wireless resource allocation strategies are still coarse and based on rough heuristics. This paper proposes an innovative 'sequential waterfilling' strategy for assigning spreading factors to End Devices. Our design relies on three complementary approaches: i) equalize the Time-on-Air of packets transmitted by the system's End Devices in each spreading factor's group; ii) balance the spreading factors across multiple gateways and iii) keep into account the channel capture, which our experimental results show to be very substantial in LoRa. While retaining an extremely simple and scalable implementation, this strategy yields a significant improvement (up to 38%) in the network capacity over the Adaptive Data Rate used by many network operators on the basis of the design suggested by Semtech, and appears to be extremely robust to different operating/load conditions and network topology configurations.
2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-INF/03
Settore IINF-03/A - Telecomunicazioni
English
Adaptive data rate; Channel capture; Inter-SF interference; Internet of Things; LoRaWAN; LPWAN; Resource allocation; Spreading factors
Garlisi, D., Tinnirello, I., Bianchi, G., Cuomo, F. (2021). Capture aware sequential waterfilling for LoRaWAN Adaptive Data Rate. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 20(3), 2019-2033 [10.1109/TWC.2020.3038638].
Garlisi, D; Tinnirello, I; Bianchi, G; Cuomo, F
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/400283
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 30
social impact