In this paper we extend the local iterative Lie-Schwinger block-diagonalization method - introduced in [8] for quantum lattice systems with bounded interactions in arbitrary dimension- to systems with unbounded interactions, i.e., systems of bosons. We study Hamiltonians that can be written as the sum of a gapped operator consisting of a sum of on-site terms and a perturbation given by relatively bounded (but unbounded) interaction potentials of short range multiplied by a real coupling constant t. For sufficiently small values of |t| independent of the size of the lattice, we prove that the spectral gap above the ground-state energy of such Hamiltonians remains strictly positive. As in [8], we iteratively construct a sequence of local blockdiagonalization steps based on unitary conjugations of the original Hamiltonian and inspired by the Lie-Schwinger procedure. To control the supports of the effective potentials generated in the course of our block-diagonalization steps, we use methods introduced in [8] for Hamiltonians with bounded interactions potentials. However, due to the unboundedness of the interaction potentials, weighted operator norms must be introduced, and some of the steps of the inductive proof by which we control the weighted norms of the effective potentials require special care to cope with matrix elements of unbounded operators. We stress that no "large-field problems" appear in our con-struction. In this respect our operator methods turn out to be an efficient tool to separate the low-energy spectral region of the Hamiltonian from other spectral regions, where the un-bounded nature of the interaction potentials would become manifest. (c) 2022 Elsevier Inc. All rights reserved.

Del Vecchio, S., Frohlich, J., Pizzo, A. (2023). Block-diagonalization of infinite-volume lattice Hamiltonians with unbounded interactions. JOURNAL OF FUNCTIONAL ANALYSIS, 284(1) [10.1016/j.jfa.2022.109734].

Block-diagonalization of infinite-volume lattice Hamiltonians with unbounded interactions

Del Vecchio S.;Pizzo A.
2023-01-01

Abstract

In this paper we extend the local iterative Lie-Schwinger block-diagonalization method - introduced in [8] for quantum lattice systems with bounded interactions in arbitrary dimension- to systems with unbounded interactions, i.e., systems of bosons. We study Hamiltonians that can be written as the sum of a gapped operator consisting of a sum of on-site terms and a perturbation given by relatively bounded (but unbounded) interaction potentials of short range multiplied by a real coupling constant t. For sufficiently small values of |t| independent of the size of the lattice, we prove that the spectral gap above the ground-state energy of such Hamiltonians remains strictly positive. As in [8], we iteratively construct a sequence of local blockdiagonalization steps based on unitary conjugations of the original Hamiltonian and inspired by the Lie-Schwinger procedure. To control the supports of the effective potentials generated in the course of our block-diagonalization steps, we use methods introduced in [8] for Hamiltonians with bounded interactions potentials. However, due to the unboundedness of the interaction potentials, weighted operator norms must be introduced, and some of the steps of the inductive proof by which we control the weighted norms of the effective potentials require special care to cope with matrix elements of unbounded operators. We stress that no "large-field problems" appear in our con-struction. In this respect our operator methods turn out to be an efficient tool to separate the low-energy spectral region of the Hamiltonian from other spectral regions, where the un-bounded nature of the interaction potentials would become manifest. (c) 2022 Elsevier Inc. All rights reserved.
1-gen-2023
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/07 - FISICA MATEMATICA
Settore MATH-04/A - Fisica matematica
English
Con Impact Factor ISI
Lattice system
Block-diagonalization
Ground -state energy
Bosons
Del Vecchio, S., Frohlich, J., Pizzo, A. (2023). Block-diagonalization of infinite-volume lattice Hamiltonians with unbounded interactions. JOURNAL OF FUNCTIONAL ANALYSIS, 284(1) [10.1016/j.jfa.2022.109734].
Del Vecchio, S; Frohlich, J; Pizzo, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022123622003548-main.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 830.84 kB
Formato Adobe PDF
830.84 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/400043
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact