: Aging syndromes are rare genetic disorders sharing the features of accelerated senescence. Among these, Mandibular hypoplasia, Deafness and Progeroid features with concomitant Lipodystrophy (MDPL; OMIM #615381) is a rare autosomal dominant disease due to a de novo in-frame deletion in POLD1 gene, encoding the catalytic subunit of DNA polymerase delta. Here, we investigated how MSCs may contribute to the phenotypes and progression of premature aging syndromes such as MDPL. In human induced pluripotent stem cells (hiPSCs)-derived MSCs of three MDPL patients we detected several hallmarks of senescence, including (i) abnormal nuclear morphology, (ii) micronuclei presence, (iii) slow cell proliferation and cell cycle progression, (iv) reduced telomere length, and (v) increased levels of mitochondrial reactive oxygen species (ROS). We newly demonstrated that the pathological hallmarks of senescence manifest at an early stage of human development and represent a warning sign for the progression of the disease. Dissecting the mechanisms underlying stem cell dysfunction during aging can thereby contribute to the development of timely pharmacological therapies for ameliorating the pathological phenotype.
Spitalieri, P., Guerrieri, L., Murdocca, M., DI CESARE, S., Maccaroni, S., Pecorari, R., et al. (2024). When do the pathological signs become evident? Study of human mesenchymal stem cells in MDPL syndrome. AGING, 16(22) [10.18632/aging.206159].
When do the pathological signs become evident? Study of human mesenchymal stem cells in MDPL syndrome
Spitalieri Paola;Guerrieri Lara;Murdocca Michela;Di Cesare Silvia;Maccaroni Serena;Pecorari Rosalba;Candi Eleonora;Colasuonno Fiorella;Gori Giulia;Novelli Giuseppe;Sangiuolo Federica
2024-01-01
Abstract
: Aging syndromes are rare genetic disorders sharing the features of accelerated senescence. Among these, Mandibular hypoplasia, Deafness and Progeroid features with concomitant Lipodystrophy (MDPL; OMIM #615381) is a rare autosomal dominant disease due to a de novo in-frame deletion in POLD1 gene, encoding the catalytic subunit of DNA polymerase delta. Here, we investigated how MSCs may contribute to the phenotypes and progression of premature aging syndromes such as MDPL. In human induced pluripotent stem cells (hiPSCs)-derived MSCs of three MDPL patients we detected several hallmarks of senescence, including (i) abnormal nuclear morphology, (ii) micronuclei presence, (iii) slow cell proliferation and cell cycle progression, (iv) reduced telomere length, and (v) increased levels of mitochondrial reactive oxygen species (ROS). We newly demonstrated that the pathological hallmarks of senescence manifest at an early stage of human development and represent a warning sign for the progression of the disease. Dissecting the mechanisms underlying stem cell dysfunction during aging can thereby contribute to the development of timely pharmacological therapies for ameliorating the pathological phenotype.File | Dimensione | Formato | |
---|---|---|---|
Spitalieri et al., 2024 Aging.pdf
accesso aperto
Licenza:
Non specificato
Dimensione
1.92 MB
Formato
Adobe PDF
|
1.92 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.