If U : [0,+infinity[xM is a uniformly continuous viscosity solution of the evolution Hamilton-Jacobi equationpartial derivative U-t + (x, partial derivative U-x) = 0,where M is a not necessarily compact manifold, and H is a Tonelli Hamiltonian, we prove the set Sigma(U), of points in ]0,+infinity[xM where U is not differentiable, is locally contractible. Moreover, we study the homotopy type of Sigma(U). We also give an application to the singularities of the distance function to a closed subset of a complete Riemannian manifold.

Cannarsa, P., Cheng, W., Fathi, A. (2021). Singularities of solutions of time dependent Hamilton-Jacobi equations. Applications to Riemannian geometry. PUBLICATIONS MATHEMATIQUES, 133(1), 327-366 [10.1007/s10240-021-00125-5].

Singularities of solutions of time dependent Hamilton-Jacobi equations. Applications to Riemannian geometry

Cannarsa P.;Cheng W.;
2021-01-01

Abstract

If U : [0,+infinity[xM is a uniformly continuous viscosity solution of the evolution Hamilton-Jacobi equationpartial derivative U-t + (x, partial derivative U-x) = 0,where M is a not necessarily compact manifold, and H is a Tonelli Hamiltonian, we prove the set Sigma(U), of points in ]0,+infinity[xM where U is not differentiable, is locally contractible. Moreover, we study the homotopy type of Sigma(U). We also give an application to the singularities of the distance function to a closed subset of a complete Riemannian manifold.
2021
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/04 - Matematiche Complementari
Settore MATH-03/A - Analisi matematica
English
Con Impact Factor ISI
Hamilton-Jacobi equations, singularities, Riemannjian geometry
Cannarsa, P., Cheng, W., Fathi, A. (2021). Singularities of solutions of time dependent Hamilton-Jacobi equations. Applications to Riemannian geometry. PUBLICATIONS MATHEMATIQUES, 133(1), 327-366 [10.1007/s10240-021-00125-5].
Cannarsa, P; Cheng, W; Fathi, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
PMC-Chn-Fth_IHES.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 825.86 kB
Formato Adobe PDF
825.86 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/398863
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact