We consider a nonlinear parabolic equation with a nonlocal term which preserves the L-2 -norm of the solution. We study the local and global well-posedness on a bounded domain, as well as the whole Euclidean space, in H- 1. Then we study the asymptotic behavior of solutions. In general, we obtain weak convergence in H (1) to a stationary state. For a ball, we prove strong convergence to the ground state when the initial condition is positive.

Antonelli, P., Cannarsa, P., Shakarov, B. (2024). Existence and asymptotic behavior for L2-norm preserving nonlinear heat equations. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 63(4) [10.1007/s00526-024-02724-6].

Existence and asymptotic behavior for L2-norm preserving nonlinear heat equations

Cannarsa P.;
2024-01-01

Abstract

We consider a nonlinear parabolic equation with a nonlocal term which preserves the L-2 -norm of the solution. We study the local and global well-posedness on a bounded domain, as well as the whole Euclidean space, in H- 1. Then we study the asymptotic behavior of solutions. In general, we obtain weak convergence in H (1) to a stationary state. For a ball, we prove strong convergence to the ground state when the initial condition is positive.
2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05
Settore MATH-03/A - Analisi matematica
English
Con Impact Factor ISI
35K55
35B40
Antonelli, P., Cannarsa, P., Shakarov, B. (2024). Existence and asymptotic behavior for L2-norm preserving nonlinear heat equations. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 63(4) [10.1007/s00526-024-02724-6].
Antonelli, P; Cannarsa, P; Shakarov, B
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Ant-PMC-Sch_CalcVar.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 539.22 kB
Formato Adobe PDF
539.22 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/398843
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact