We study the differential graded Lie algebra of endomorphisms of the Koszul resolution of a regular sequence on a unitary commutative K-algebra R and we prove that it is homotopy abelian over K but not over R (except trivial cases). We apply this result to prove an anni hilation theorem for obstructions of (derived) deformations of locally complete intersection ideal sheaves on projective schemes.

Carocci, F., Manetti, M. (2020). Endomorphisms of Koszul complexes: formality and application to deformation theory. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 69(1), 175-193 [10.1007/s12215-018-00394-w].

Endomorphisms of Koszul complexes: formality and application to deformation theory

Carocci F;
2020-01-01

Abstract

We study the differential graded Lie algebra of endomorphisms of the Koszul resolution of a regular sequence on a unitary commutative K-algebra R and we prove that it is homotopy abelian over K but not over R (except trivial cases). We apply this result to prove an anni hilation theorem for obstructions of (derived) deformations of locally complete intersection ideal sheaves on projective schemes.
2020
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MATH-02/B - Geometria
English
Con Impact Factor ISI
Carocci, F., Manetti, M. (2020). Endomorphisms of Koszul complexes: formality and application to deformation theory. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 69(1), 175-193 [10.1007/s12215-018-00394-w].
Carocci, F; Manetti, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Endo_Kos.Pubblicazione5.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 514.52 kB
Formato Adobe PDF
514.52 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/398267
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact