We define p-adic BPS or pBPS invariants for moduli spaces Mβ,χ of one-dimensional sheaves on del Pezzo and K3 surfaces by means of integration over a non-archimedean local field F. Our definition relies on a canonical measure μcan on the F-analytic man ifold associated to Mβ,χ and the pBPS invariants are integrals of natural Gm gerbes with respect to μcan. A similar construction can be done for meromorphic and usual Higgs bundles on a curve. Our main theorem is a χ-independence result for these pBPS invariants. For one-dimensional sheaves on del Pezzo surfaces and meromor phic Higgs bundles, we obtain as a corollary the agreement of pBPS with usual BPS invariants through a result of Maulik and Shen [Cohomological χ-independence for mod uli of one-dimensional sheaves and moduli of Higgs bundles,Geom.Topol.27 (2023), 1539–1586].

Carocci, F., Orecchia, G., Wyss, D. (2024). BPS invariants from p-adic integrals. COMPOSITIO MATHEMATICA, 160(7), 1525-1550 [10.1112/S0010437X24007176].

BPS invariants from p-adic integrals

Carocci F;
2024-01-01

Abstract

We define p-adic BPS or pBPS invariants for moduli spaces Mβ,χ of one-dimensional sheaves on del Pezzo and K3 surfaces by means of integration over a non-archimedean local field F. Our definition relies on a canonical measure μcan on the F-analytic man ifold associated to Mβ,χ and the pBPS invariants are integrals of natural Gm gerbes with respect to μcan. A similar construction can be done for meromorphic and usual Higgs bundles on a curve. Our main theorem is a χ-independence result for these pBPS invariants. For one-dimensional sheaves on del Pezzo surfaces and meromor phic Higgs bundles, we obtain as a corollary the agreement of pBPS with usual BPS invariants through a result of Maulik and Shen [Cohomological χ-independence for mod uli of one-dimensional sheaves and moduli of Higgs bundles,Geom.Topol.27 (2023), 1539–1586].
2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MATH-02/B - Geometria
English
Con Impact Factor ISI
Carocci, F., Orecchia, G., Wyss, D. (2024). BPS invariants from p-adic integrals. COMPOSITIO MATHEMATICA, 160(7), 1525-1550 [10.1112/S0010437X24007176].
Carocci, F; Orecchia, G; Wyss, D
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
bps-invariants-from-p-adic-integrals.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright degli autori
Dimensione 717.86 kB
Formato Adobe PDF
717.86 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/398264
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact