Fix integers r≥4 and i≥2. Let C be a non-degenerate, reduced and irreducible complex projective curve in Pr, of degree d, not contained in a hypersurface of degree ≤i. Let pa(C) be the arithmetic genus of C. Continuing previous research, under the assumption d≫max{r,i}, in the present paper we exhibit a Castelnuovo bound G0(r;d,i) for pa(C). In general, we do not know whether this bound is sharp. However, we are able to prove it is sharp when i=2, r=6 and d≡0,3,6 (mod 9). Moreover, when i=2, r≥9, r is divisible by 3, and d≡0 (mod r(r+3)/6), we prove that if G0(r;d,i) is not sharp, then for the maximal value of pa(C) there are only three possibilities. The case in which i=2 and r is not divisible by 3 has already been examined in the literature. We give some information on the extremal curves.

DI GENNARO, V., Marini, G. (2024). On the genus of projective curves not contained in hypersurfaces of given degree, II. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO [10.1007/s12215-024-01136-x].

On the genus of projective curves not contained in hypersurfaces of given degree, II

Vincenzo Di Gennaro
;
Giambattista Marini
2024-01-01

Abstract

Fix integers r≥4 and i≥2. Let C be a non-degenerate, reduced and irreducible complex projective curve in Pr, of degree d, not contained in a hypersurface of degree ≤i. Let pa(C) be the arithmetic genus of C. Continuing previous research, under the assumption d≫max{r,i}, in the present paper we exhibit a Castelnuovo bound G0(r;d,i) for pa(C). In general, we do not know whether this bound is sharp. However, we are able to prove it is sharp when i=2, r=6 and d≡0,3,6 (mod 9). Moreover, when i=2, r≥9, r is divisible by 3, and d≡0 (mod r(r+3)/6), we prove that if G0(r;d,i) is not sharp, then for the maximal value of pa(C) there are only three possibilities. The case in which i=2 and r is not divisible by 3 has already been examined in the literature. We give some information on the extremal curves.
2024
Online ahead of print
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MATH-02/B - Geometria
English
Con Impact Factor ISI
Castelnuovo–Halphen theory
Maximal rank
Projection of a rational normal scroll surface
Projective curves
Quadric hypersurfaces
Veronese surface
DI GENNARO, V., Marini, G. (2024). On the genus of projective curves not contained in hypersurfaces of given degree, II. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO [10.1007/s12215-024-01136-x].
DI GENNARO, V; Marini, G
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
[44] RCMP 8.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 392.63 kB
Formato Adobe PDF
392.63 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/398183
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact