Using Araki-Yamagami's characterization of quasi-equivalence for quasi-free representations of the CCRs, we provide an abstract criterion for the existence of isomorphisms of second quantization local von Neumann algebras induced by Bogolubov transformations in terms of the respective one particle modular operators. We discuss possible applications to the problem of local normality of vacua of Klein-Gordon fields with different masses.

Conti, R., Morsella, G. (2024). Quasi-free Isomorphisms of Second Quantization Algebras and Modular Theory. MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 27(2) [10.1007/s11040-024-09479-8].

Quasi-free Isomorphisms of Second Quantization Algebras and Modular Theory

Morsella G.
2024-01-01

Abstract

Using Araki-Yamagami's characterization of quasi-equivalence for quasi-free representations of the CCRs, we provide an abstract criterion for the existence of isomorphisms of second quantization local von Neumann algebras induced by Bogolubov transformations in terms of the respective one particle modular operators. We discuss possible applications to the problem of local normality of vacua of Klein-Gordon fields with different masses.
2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MATH-03/A - Analisi matematica
English
Con Impact Factor ISI
Weyl algebra
Quasi-free isomorphism
Tomita-Takesaki modular theory
Free quantum scalar field
Conti, R., Morsella, G. (2024). Quasi-free Isomorphisms of Second Quantization Algebras and Modular Theory. MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 27(2) [10.1007/s11040-024-09479-8].
Conti, R; Morsella, G
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
published.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 373.98 kB
Formato Adobe PDF
373.98 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/397329
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact