It has been shown recently, without an explanation of the possible molecular mechanisms involved, that 4-(2-hydroxyethyl)-1-piperazinepropanesulphonic (EPPS) acid effectively protects from the neurotoxicity induced by oligomers and plaques formed by the protein amyloid-beta protein. Here we report the same protective effect, obtained in vitro (HT22-diff cell line) and ex vivo (hippocampal slices) models, against amyloid neurotoxicity induced by oligomers of salmon Calcitonin (sCT), which has been shown to be a good model for the study of neurodegenerative diseases. Based on biophysical studies focusing on the protein aggregation kinetic and the interaction of the aggregates with model membranes, we propose a possible molecular mechanism underlying the protective effects. Taken together, our results indicate that EPPS is able to counteract the direct association (primary aggregation) of harmless low-molecular weight aggregates (dimers and trimers) or their aggregation catalysed by surfaces present in the solution (secondary aggregation). Thus, EPPS stabilizes harmless aggregates and hinders the formation of toxic and metastable prefibrillar oligomers. Overall, our data demonstrate that EPPS is an excellent drug candidate for the treatment of neurodegeneration due to misfolded proteins, such as Alzheimer's or Parkinson's disease.

Zarrilli, B., Bonanni, R., Belfiore, M., Severino, M., Cariati, I., Fioravanti, R., et al. (2024). Molecular mechanisms at the basis of the protective effect exerted by EPPS on neurodegeneration induced by prefibrillar amyloid oligomers. SCIENTIFIC REPORTS, 14(1) [10.1038/s41598-024-77859-9].

Molecular mechanisms at the basis of the protective effect exerted by EPPS on neurodegeneration induced by prefibrillar amyloid oligomers

Zarrilli, B
Writing – Original Draft Preparation
;
Bonanni, R;Cariati, I
Investigation
;
Tancredi, V
Visualization
;
D'Arcangelo, G
2024-11-01

Abstract

It has been shown recently, without an explanation of the possible molecular mechanisms involved, that 4-(2-hydroxyethyl)-1-piperazinepropanesulphonic (EPPS) acid effectively protects from the neurotoxicity induced by oligomers and plaques formed by the protein amyloid-beta protein. Here we report the same protective effect, obtained in vitro (HT22-diff cell line) and ex vivo (hippocampal slices) models, against amyloid neurotoxicity induced by oligomers of salmon Calcitonin (sCT), which has been shown to be a good model for the study of neurodegenerative diseases. Based on biophysical studies focusing on the protein aggregation kinetic and the interaction of the aggregates with model membranes, we propose a possible molecular mechanism underlying the protective effects. Taken together, our results indicate that EPPS is able to counteract the direct association (primary aggregation) of harmless low-molecular weight aggregates (dimers and trimers) or their aggregation catalysed by surfaces present in the solution (secondary aggregation). Thus, EPPS stabilizes harmless aggregates and hinders the formation of toxic and metastable prefibrillar oligomers. Overall, our data demonstrate that EPPS is an excellent drug candidate for the treatment of neurodegeneration due to misfolded proteins, such as Alzheimer's or Parkinson's disease.
nov-2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIOS-06/A - Fisiologia
Settore MEDF-01/A - Metodi e didattiche delle attività motorie
English
salmon calcitonin (sCT); neurodegeneration; prefibrillar oligomers (PFOs); alzheimer’s disease (AD); 4-(2-hydroxyethyl)-1-piperazinepropanesulphonic acid (EPPS)
Zarrilli, B., Bonanni, R., Belfiore, M., Severino, M., Cariati, I., Fioravanti, R., et al. (2024). Molecular mechanisms at the basis of the protective effect exerted by EPPS on neurodegeneration induced by prefibrillar amyloid oligomers. SCIENTIFIC REPORTS, 14(1) [10.1038/s41598-024-77859-9].
Zarrilli, B; Bonanni, R; Belfiore, M; Severino, M; Cariati, I; Fioravanti, R; Cappella, G; Sennato, S; Frank, C; Giordani, C; Tancredi, V; Bombelli, C...espandi
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
41598_2024_Article_77859.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.28 MB
Formato Adobe PDF
3.28 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/397145
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact