The reliable exchange of data is a crucial issue for the loose coupling of computational fluid dynamics (CFD) and computational structural mechanics (CSM) modules in fluid–structure interaction (FSI) applications. This paper presents a comparison between two methods for mapping the traction field across mismatching grids, namely the RIBES method and the preCICE algorithm, both based on radial basis function (RBF) interpolation. The two methods demonstrate different degrees of control over balance preservation during mapping, with the RIBES algorithm exhibiting greater efficacy. Test benches are a parametric double curved geometry and a wind tunnel mock-up. In this second case, forces from mapping are used to load a CSM model to retrieve stress and displacement fields. Differences in FEM results are appreciable although not significant, showing a correlation between the accuracy of balance preservation during data mapping and the structural output.

Chiappa, A., Lopez, A., Groth, C. (2024). Advanced RBF methods for mapping aerodynamic loads onto structures in high-fidelity FSI simulations. FLUIDS, 9(6) [10.3390/fluids9060137].

Advanced RBF methods for mapping aerodynamic loads onto structures in high-fidelity FSI simulations

Chiappa, Andrea
;
Lopez, Andrea;Groth, Corrado
2024-01-01

Abstract

The reliable exchange of data is a crucial issue for the loose coupling of computational fluid dynamics (CFD) and computational structural mechanics (CSM) modules in fluid–structure interaction (FSI) applications. This paper presents a comparison between two methods for mapping the traction field across mismatching grids, namely the RIBES method and the preCICE algorithm, both based on radial basis function (RBF) interpolation. The two methods demonstrate different degrees of control over balance preservation during mapping, with the RIBES algorithm exhibiting greater efficacy. Test benches are a parametric double curved geometry and a wind tunnel mock-up. In this second case, forces from mapping are used to load a CSM model to retrieve stress and displacement fields. Differences in FEM results are appreciable although not significant, showing a correlation between the accuracy of balance preservation during data mapping and the structural output.
2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore IIND-03/A - Progettazione meccanica e costruzione di macchine
English
Conservative
Consistent
Mapping
Multiphysics
Radial basis functions
Chiappa, A., Lopez, A., Groth, C. (2024). Advanced RBF methods for mapping aerodynamic loads onto structures in high-fidelity FSI simulations. FLUIDS, 9(6) [10.3390/fluids9060137].
Chiappa, A; Lopez, A; Groth, C
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/396970
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact