We classify the finite type (in the sense of E. Cartan theory of prolongations) subalgebras h ⊂ sp(V), where V is the symplectic 4-dimensional space, and show that they satisfy h(k) = 0 for all k > 0. Using this result, we reduce the problem of classification of graded transitive finite-dimensional Lie algebras g of symplectic vector fields on V to the description of graded transitive finite-dimensional subalgebras of the full prolongations p(∞)1 and p(∞)2, where p1 and p2 are the maximal parabolic subalgebras of sp(V). We then classify all such g ⊂ p(∞)i, i = 1, 2, under some assumptions, and describe the associated 4-dimensional homogeneous symplectic manifolds (M = G/K, Ω). We prove that any reductive homogeneous symplectic manifold (of any dimension) admits an invariant torsion free symplectic connection, i.e., it is a homogeneous Fedosov manifold, and give conditions for the uniqueness of the Fedosov structure. Finally, we show that any nilpotent symplectic Lie group (of any dimension) admits a natural invariant Fedosov structure which is Ricci-flat.

Alekseevsky, D.v., Santi, A. (2020). Homogeneous symplectic 4-manifolds and finite dimensional lie algebras of symplectic vector fields on the symplectic 4-space. MOSCOW MATHEMATICAL JOURNAL, 20(2), 217-256 [10.17323/1609-4514-2020-20-2-217-256].

Homogeneous symplectic 4-manifolds and finite dimensional lie algebras of symplectic vector fields on the symplectic 4-space

Santi A.
2020-01-01

Abstract

We classify the finite type (in the sense of E. Cartan theory of prolongations) subalgebras h ⊂ sp(V), where V is the symplectic 4-dimensional space, and show that they satisfy h(k) = 0 for all k > 0. Using this result, we reduce the problem of classification of graded transitive finite-dimensional Lie algebras g of symplectic vector fields on V to the description of graded transitive finite-dimensional subalgebras of the full prolongations p(∞)1 and p(∞)2, where p1 and p2 are the maximal parabolic subalgebras of sp(V). We then classify all such g ⊂ p(∞)i, i = 1, 2, under some assumptions, and describe the associated 4-dimensional homogeneous symplectic manifolds (M = G/K, Ω). We prove that any reductive homogeneous symplectic manifold (of any dimension) admits an invariant torsion free symplectic connection, i.e., it is a homogeneous Fedosov manifold, and give conditions for the uniqueness of the Fedosov structure. Finally, we show that any nilpotent symplectic Lie group (of any dimension) admits a natural invariant Fedosov structure which is Ricci-flat.
2020
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MATH-02/B - Geometria
Settore MATH-02/A - Algebra
English
Con Impact Factor ISI
E. cartan’s prolongation
Homogeneous fedosov manifold
Homogeneous symplectic manifold
Lie algebra of symplectic vector fields
Alekseevsky, D.v., Santi, A. (2020). Homogeneous symplectic 4-manifolds and finite dimensional lie algebras of symplectic vector fields on the symplectic 4-space. MOSCOW MATHEMATICAL JOURNAL, 20(2), 217-256 [10.17323/1609-4514-2020-20-2-217-256].
Alekseevsky, Dv; Santi, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Homogeneous symplectic 4-manifolds.pdf

solo utenti autorizzati

Descrizione: Article
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 664.86 kB
Formato Adobe PDF
664.86 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/396285
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact