Let V be a complex vector space with a non-degenerate symmetric bilinear form and S an irreducible module over the Clifford algebra Cℓ(V) determined by this form. A supertranslation algebra is a Z-graded Lie superalgebra m=m-2⊕m-1, where m-2=V and m-1=S⊕⋯⊕S is the direct sum of an arbitrary number N ≥ 1 of copies of S, whose bracket [{dot operator},{dot operator}]|m-1⊗m-1:m-1⊗m-1→m-2 is symmetric, so(V)-equivariant and non-degenerate (that is the condition ". s∈m-1,[s,m-1]=0" implies s = 0). We consider the maximal transitive prolongations in the sense of Tanaka of supertranslation algebras. We prove that they are finite-dimensional for dim <> V ≥ 3 and classify them in terms of super-Poincaré algebras and appropriate Z-gradings of simple Lie superalgebras. © 2014 Elsevier Inc.

Altomani, A., Santi, A. (2014). Classification of maximal transitive prolongations of super-Poincar{\'e} algebras. ADVANCES IN MATHEMATICS, 265, 60-96 [10.1016/j.aim.2014.07.031].

Classification of maximal transitive prolongations of super-Poincar{\'e} algebras

Santi, A.
2014-01-01

Abstract

Let V be a complex vector space with a non-degenerate symmetric bilinear form and S an irreducible module over the Clifford algebra Cℓ(V) determined by this form. A supertranslation algebra is a Z-graded Lie superalgebra m=m-2⊕m-1, where m-2=V and m-1=S⊕⋯⊕S is the direct sum of an arbitrary number N ≥ 1 of copies of S, whose bracket [{dot operator},{dot operator}]|m-1⊗m-1:m-1⊗m-1→m-2 is symmetric, so(V)-equivariant and non-degenerate (that is the condition ". s∈m-1,[s,m-1]=0" implies s = 0). We consider the maximal transitive prolongations in the sense of Tanaka of supertranslation algebras. We prove that they are finite-dimensional for dim <> V ≥ 3 and classify them in terms of super-Poincaré algebras and appropriate Z-gradings of simple Lie superalgebras. © 2014 Elsevier Inc.
2014
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MATH-02/A - Algebra
Settore MATH-04/A - Fisica matematica
English
Con Impact Factor ISI
Clifford algebras and spinors
Super-Poincaré algebras
Supergravity
Tanaka prolongations
Altomani, A., Santi, A. (2014). Classification of maximal transitive prolongations of super-Poincar{\'e} algebras. ADVANCES IN MATHEMATICS, 265, 60-96 [10.1016/j.aim.2014.07.031].
Altomani, A; Santi, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Classification of maximal transitive prolongations of super Poincaré algebras.pdf

solo utenti autorizzati

Descrizione: Article
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 612.18 kB
Formato Adobe PDF
612.18 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/396278
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact