We apply the general theory of codimension one integrability conditions for G-structures developed in Santi (Ann Mat Pura Appl 195:1463–1489, 2016) to the case of quaternionic CR geometry. We obtain necessary and sufficient conditions for an almost CR quaternionic manifold to admit local immersions as an hypersurface of the quaternionic projective space. We construct a deformation of the standard quaternionic contact structure on the quaternionic Heisenberg group which does not admit local immersions in any quaternionic manifold.

Santi, A. (2017). Almost CR quaternionic manifolds and their immersibility in HP^n. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 87(1), 83-103 [10.1007/s12188-016-0136-3].

Almost CR quaternionic manifolds and their immersibility in HP^n

Santi A.
2017-01-01

Abstract

We apply the general theory of codimension one integrability conditions for G-structures developed in Santi (Ann Mat Pura Appl 195:1463–1489, 2016) to the case of quaternionic CR geometry. We obtain necessary and sufficient conditions for an almost CR quaternionic manifold to admit local immersions as an hypersurface of the quaternionic projective space. We construct a deformation of the standard quaternionic contact structure on the quaternionic Heisenberg group which does not admit local immersions in any quaternionic manifold.
2017
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MATH-02/B - Geometria
Settore MATH-02/A - Algebra
English
Con Impact Factor ISI
CR quaternionic manifold
Generalized integrability problem for G-structures
Generalized Spencer cohomology groups
Quaternionic projective space
Santi, A. (2017). Almost CR quaternionic manifolds and their immersibility in HP^n. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 87(1), 83-103 [10.1007/s12188-016-0136-3].
Santi, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Almost CR quaternionic manifolds and their immersibility in HP^n.pdf

solo utenti autorizzati

Descrizione: Article
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 567.97 kB
Formato Adobe PDF
567.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/396277
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact