Let (V, (·, ·)) be a pseudo-Euclidean vector space and S an irreducible Cℓ(V)-module. An extended translation algebra is a graded Lie algebra m = m-2 + m-1 = V + S with bracket given by ([s, t],v) = b(v · , t) for some nondegenerate so(V)-invariant reflexive bilinear form b on S. An extended Poincaré structure on a manifold M is a regular distribution D of depth 2 whose Levi form Lx : Dx ΛDx → TxM/Dx at any point x ∈ M is identifiable with the bracket [·, ·: S Λ S → V of a fixed extended translation algebra m. The classification of the standard maximally homogeneous manifolds with an extended Poincaré structure is given, in terms of Tanaka prolongations of extended translation algebras and of appropriate gradations of real simple Lie algebras. © Indiana University Mathematics Journal.
Altomani, A., Santi, A. (2014). Tanaka structures modeled on extended Poincar{\'e} algebras. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 63(1), 91-117 [10.1512/iumj.2014.63.5186].
Tanaka structures modeled on extended Poincar{\'e} algebras
Santi, A.
2014-01-01
Abstract
Let (V, (·, ·)) be a pseudo-Euclidean vector space and S an irreducible Cℓ(V)-module. An extended translation algebra is a graded Lie algebra m = m-2 + m-1 = V + S with bracket given by ([s, t],v) = b(v · , t) for some nondegenerate so(V)-invariant reflexive bilinear form b on S. An extended Poincaré structure on a manifold M is a regular distribution D of depth 2 whose Levi form Lx : Dx ΛDx → TxM/Dx at any point x ∈ M is identifiable with the bracket [·, ·: S Λ S → V of a fixed extended translation algebra m. The classification of the standard maximally homogeneous manifolds with an extended Poincaré structure is given, in terms of Tanaka prolongations of extended translation algebras and of appropriate gradations of real simple Lie algebras. © Indiana University Mathematics Journal.File | Dimensione | Formato | |
---|---|---|---|
Tanaka structures modeled on extended Poincaré algebras.pdf
solo utenti autorizzati
Descrizione: Article
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
328.48 kB
Formato
Adobe PDF
|
328.48 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.