We consider a class of non-cooperative N-player nonzero-sum stochastic differential games with singular controls, in which each player can affect a linear stochastic differential equation in order to minimize a cost functional which is quadratic in the state and linear in the control. We call these games linear-quadratic-singular stochastic differential games. Under natural assumptions, we show the existence of open-loop Nash equilibria, which are characterized through a linear system of forward-backward stochastic differential equations. The proof is based on an approximation via a sequence of games in which players are restricted to play Lipschitz continuous strategies. We then discuss an application of these results to a model of capacity expansion in oligopoly markets.
Dianetti, J. (2023). Linear-quadratic-singular stochastic differential games and applications. DECISIONS IN ECONOMICS AND FINANCE [10.1007/s10203-023-00422-0].
Linear-quadratic-singular stochastic differential games and applications
Jodi Dianetti
2023-01-01
Abstract
We consider a class of non-cooperative N-player nonzero-sum stochastic differential games with singular controls, in which each player can affect a linear stochastic differential equation in order to minimize a cost functional which is quadratic in the state and linear in the control. We call these games linear-quadratic-singular stochastic differential games. Under natural assumptions, we show the existence of open-loop Nash equilibria, which are characterized through a linear system of forward-backward stochastic differential equations. The proof is based on an approximation via a sequence of games in which players are restricted to play Lipschitz continuous strategies. We then discuss an application of these results to a model of capacity expansion in oligopoly markets.File | Dimensione | Formato | |
---|---|---|---|
2304.09033v1.pdf
non disponibili
Licenza:
Non specificato
Dimensione
297.89 kB
Formato
Adobe PDF
|
297.89 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.