We investigate 3-nondegenerate CR structures in the lowest possible dimension 7, and one of our goals is to prove Beloshapka’s conjecture on the symmetry dimension bound for hypersurfaces in C^4. We claim that 8 is the maximal symmetry dimension of 3- nondegenerate CR structures in dimension 7, which is achieved on the homogeneous model. This part (I) is devoted to the homogeneous case: we prove that the model is locally the only homogeneous 3-nondegenerate CR structure in dimension 7.

Kruglikov, B., Santi, A. (2025). On 3-nondegenerate 7-dimensional CR manifolds (I): the transitive case. JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK [10.1515/crelle-2024-0093].

On 3-nondegenerate 7-dimensional CR manifolds (I): the transitive case

Santi, Andrea
2025-01-08

Abstract

We investigate 3-nondegenerate CR structures in the lowest possible dimension 7, and one of our goals is to prove Beloshapka’s conjecture on the symmetry dimension bound for hypersurfaces in C^4. We claim that 8 is the maximal symmetry dimension of 3- nondegenerate CR structures in dimension 7, which is achieved on the homogeneous model. This part (I) is devoted to the homogeneous case: we prove that the model is locally the only homogeneous 3-nondegenerate CR structure in dimension 7.
8-gen-2025
Online ahead of print
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03
Settore MAT/02
Settore MATH-02/B - Geometria
Settore MATH-02/A - Algebra
English
Con Impact Factor ISI
k-nondegenerate CR manifold, Levi degenerate CR manifold
Kruglikov, B., Santi, A. (2025). On 3-nondegenerate 7-dimensional CR manifolds (I): the transitive case. JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK [10.1515/crelle-2024-0093].
Kruglikov, B; Santi, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
On 3-nondegenerate CR manifolds in dimension 7 (I) The transitive case.pdf

solo utenti autorizzati

Descrizione: Article
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 524.56 kB
Formato Adobe PDF
524.56 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/396203
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 2
social impact