The paper deals with the existence of positive solutions with prescribed L2 norm for the Schrödinger equation (Formula Presented), where Ω = RN or RN \ Ω is a compact set, ρ > 0, V ≽ 0 (also V ≡ 0 is allowed), p ∈ (2, 2 + N4 ). The existence of a positive solution ū is proved when V verifies a suitable decay assumption (Dρ), or if ⃦V ⃦Lq is small, for some q ≽ N2 (q > 1 if N = 2). No smallness assumption on V is required if the decay assumption (Dρ) is fulfilled. There are no assumptions on the size of RN \ Ω. The solution ū is a bound state and no ground state solution exists, up to the autonomous case V ≡ 0 and Ω = RN

Lancelotti, S., Molle, R. (2024). Normalized positive solutions for Schrödinger equations with potentials in unbounded domains. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS, 154(5), 1518-1551 [10.1017/prm.2023.78].

Normalized positive solutions for Schrödinger equations with potentials in unbounded domains

Molle R.
2024-01-01

Abstract

The paper deals with the existence of positive solutions with prescribed L2 norm for the Schrödinger equation (Formula Presented), where Ω = RN or RN \ Ω is a compact set, ρ > 0, V ≽ 0 (also V ≡ 0 is allowed), p ∈ (2, 2 + N4 ). The existence of a positive solution ū is proved when V verifies a suitable decay assumption (Dρ), or if ⃦V ⃦Lq is small, for some q ≽ N2 (q > 1 if N = 2). No smallness assumption on V is required if the decay assumption (Dρ) is fulfilled. There are no assumptions on the size of RN \ Ω. The solution ū is a bound state and no ground state solution exists, up to the autonomous case V ≡ 0 and Ω = RN
2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MATH-03/A - Analisi matematica
English
Con Impact Factor ISI
exterior domains
Nonlinear Schrödinger equations
normalized solutions
positive solutions
Lancelotti, S., Molle, R. (2024). Normalized positive solutions for Schrödinger equations with potentials in unbounded domains. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS, 154(5), 1518-1551 [10.1017/prm.2023.78].
Lancelotti, S; Molle, R
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Lancelotti_Molle_normalized_solutions.pdf

solo utenti autorizzati

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 375.42 kB
Formato Adobe PDF
375.42 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/395889
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 3
social impact